Contents

1	Smo	ooth manifolds	1
	1.1 1.2 1.3 1.4 1.5	Smooth manifolds The inverse function theorem and implicit function theorem Submanifolds of \mathbb{R}^m Submanifolds of manifolds More constructions of manifolds More smooth manifolds: The Grassmannians Appendix 1.1 How to prove the inverse function and implicit function theorems Appendix 1.2 Partitions of unity Additional reading	1 3 4 7 8 9 11 13
2	Mat	rices and Lie groups	14
	2.1 2.2 2.3 2.4 2.5 2.6	The general linear group Lie groups Examples of Lie groups Some complex Lie groups The groups SI(n; C), U(n) and SU(n) Notation with regards to matrices and differentials Appendix 2.1 The transition functions for the Grassmannians Additional reading	14 15 16 17 19 21 22 24
3	Intro	oduction to vector bundles	25
	3.1 3.2 3.3 3.4	The definition The standard definition The first examples of vector bundles The tangent bundle	25 27 28 29

viii	Content

	3.5 3.6 3.7 3.8 3.9	Tangent bundle examples The cotangent bundle Bundle homomorphisms Sections of vector bundles Sections of TM and T*M Additional reading	31 33 34 35 36 38
4	Alge	bra of vector bundles	39
	4.1	Subbundles	39
	4.2	Quotient bundles	40
	4.3	The dual bundle	41
	4.4	Bundles of homomorphisms	42
	4.5	Tensor product bundles	43
	4.6	The direct sum	43
	4.7	Tensor powers	44
		Additional reading	46
5	Map	s and vector bundles	48
-	5.1	The pull-back construction	48
	5.2	Pull-backs and Grassmannians	49
	5.3	Pull-back of differential forms and push-forward of	
		vector fields	50
	5.4	Invariant forms and vector fields on Lie groups	52
	5.5	The exponential map on a matrix group	53
	5.6	The exponential map and right/left invariance on Gl(n; $\mathbb C$)	
		and its subgroups	55
	5.7	Immersion, submersion and transversality	57
		Additional reading	58
6	Vec	tor bundles with \mathbb{C}^n as fiber	59
*******	6.1	Definitions	59
	6.2	Comparing definitions	60
	6.3	Examples: The complexification	62
	6.4	Complex bundles over surfaces in \mathbb{R}^3	63
	6.5	The tangent bundle to a surface in \mathbb{R}^3	64
	6.6	Bundles over 4-dimensional submanifolds in \mathbb{R}^5	64
	6.7	Complex bundles over 4-dimensional manifolds	65
	6.8	Complex Grassmannians	65

			Contents
	6.9	The exterior product construction	68
	6.10	0 ,	69
	6.11	Pull-back	70
		Additional reading	71
7	Metr	ics on vector bundles	72
	7.1 7.2	Metrics and transition functions for real vector bundles Metrics and transition functions for complex	73
		vector bundles	75
	7.3	Metrics, algebra and maps	75
	7.4	Metrics on TM	77
		Additional reading	77
8	Geod	desics	78
	8.1	Riemannian metrics and distance	78
	8.2	Length minimizing curves	79
	8.3	The existence of geodesics	81
	8.4	First examples	82
	8.5	Geodesics on SO(n)	85
	8.6	Geodesics on U(n) and SU(n)	89
	8.7	Geodesics and matrix groups	92
		Appendix 8.1 The proof of the vector field theorem	93
		Additional reading	94
9	Prop	erties of geodesics	96
	9.1	The maximal extension of a geodesic	96
	9.2	The exponential map	96
	9.3	Gaussian coordinates	98
	9.4	The proof of the geodesic theorem	100
		Additional reading	103
0	Princ	ipal bundles	104
***************************************	10.1	The definition	104
	10.2	A cocycle definition	105
	10.3	Principal bundles constructed from vector bundles	106
	10.4	Quotients of Lie groups by subgroups	108

71160							
	10.5	Examples of Lie group quotients	110		13.6	6 The flat connections on bundles over M	15
	10.6	Cocycle construction examples	113		13.7	7. The universal covering space	15
	10.7	Pull-backs of principal bundles	116		13.8	8 Holonomy and curvature	16
	10.7	Reducible principal bundles	118		13.9	Proof of the classification theorem for flat connections	16
	10.9	Associated vector bundles	119			Appendix 13.1 Smoothing maps	16
	10.9	Appendix 10.1 Proof of Proposition 10.1	121			Appendix 13.2 The proof of the Frobenius theorem	16
		Additional reading	124			Additional reading	16
1	Covar	iant derivatives and connections	125	14	Cur	vature polynomials and characteristic classes	17
-	411	Covariant derivatives	125		14.1	1 The Bianchi Identity	17
	11.1	The space of covariant derivatives	126		14.2	•	17
	11.2	Another construction of covariant derivatives	127		14.3		17
	11.3		128		14.4		17
	11.4	Principal bundles and connections Connections and covariant derivatives	134		14.5		17.
	11.5		135			and the Chern classes	17
	11.6	Horizontal lifts	155		14.6		17
	11.7	An application to the classification of principal	136		1-7.0	the Pontryagin classes	17
		G-bundles up to isomorphism	137		14.7		18
	11.8	Connections, covariant derivatives and pull-back bundles	138		14.8		18
		Additional reading	130		14.9	·	19
-			-		14.7	A Chemisinons form Appendix 14.1 The ad-invariant functions on $\mathbb{M}(n; \mathbb{C})$	19
2	Covar	riant derivatives, connections and curvature	139			,,	
-						Appendix 14.2 Integration on manifolds	19:
	12.1	Exterior derivative	139			Appendix 14.3 The degree of a map	19
	12.2	Closed forms, exact forms, diffeomorphisms and				Additional reading	20
		De Rham cohomology	141	190			-
	12.3	Lie derivative	143	15	Cov	ariant derivatives and metrics	20
	12.4	Curvature and covariant derivatives	144	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	12.5	An example	146		15.1	Metric compatible covariant derivatives	20
	12.6	•	148		15.2	2 Torsion free covariant derivatives on T*M	208
-	12.7	Connections and curvature	148		15.3	B The Levi-Civita connection/covariant derivative	210
	12.8	The horizontal subbundle revisited	150		15.4	A formula for the Levi-Civita connection	21
		Additional reading	151		15.5	5 Covariantly constant sections	21:
					15.6	An example of the Levi-Civita connection	214
			450		15.7		210
ابًا	Flat c	connections and holonomy	152			Additional reading	218
	13.1	Flat connections	152				U n manner de ma
	13.2		153	16	The	Riemann curvature tensor	220
	13.3		155				
		Automorphisms of a principal bundle	156	Established		Spherical metrics, flat metrics and hyperbolic metrics	220
	135	The fundamental group	157		16.2	2 The Schwarzchild metric	223

Contents xi

224 3onnet formula 227 229 230 ering spaces 232 233 cobi 236 238 ct matrix group 239 244
245
functions on \mathbb{C}^n 246 247 248 251 5 on TM 255 255 256 257 1 Kähler form 258 259 1 nplex structures 261 267
ons 268
ex manifold 268
ve spaces 269 norphic
271
272
275 277
211
279
v la access the color of the co

19	The I-	lodge star	282		
	19.1	Definition of the Hodge star	282		
	19.2	Representatives of De Rham cohomology	283		
	19.3	A fairy tale	284		
	19.4	The Hodge theorem	285		
	19.5	Self-duality	286		
٠.		Additional reading	287		
List of lemmas, propositions, corollaries and theorems					
List	List of symbols				
Inde	ndex 2				

Contents xiii