Contents

1	Bac	kornin	d Basics and Some IEC Experiments	1
-	1 1	Introdu	uction	1
	1.1	1 1 1	Comments About Current Studies	2
	1 2	Cridde	d IEC Davisos	2
	1.2			5
	1.5	IEC F		5
	1.4	IEC H		/
		1.4.1	Prior Virtual Electrode Studies	8
	1.5	Recent		9
	1.6	Some	IEC Basics	10
		1.6.1	Thorson's Triple Grid IEC Device	16
		1.6.2	Murali's Triple Grid RF-Based IEC Device	17
		1.6.3	The Ring-Shaped Magnetron Ion Source	
			(RS-MIS)-Based IEC Device	19
		1.6.4	Miley's "Ion-Injected" Device	20
		1.6.5	Nebel–Barnes POPS Device	21
		1.6.6	Murali's High-Pressure IEC Concept	22
		1.6.7	Bussard HEPS (or Polywell) Concept	24
		1.6.8	Barnes–Nebel Penning Trap	25
	1.7	Summ	ary	26
	Refe	erences.	· · · · · · · · · · · · · · · · · · ·	26
2	The	orv of V	Well Potential Trans in the IFC	31
-	2.1	Introdu	uction	31
	2.1	Ion Ve	Alocity Distribution	40
	2.2	Condit	tions for Maximum Thermonuclear Dower	41
	2.5		The Eernewerth "Euger"	41
		2.5.1		43
	~ 4	2.3.2		48
	2.4	The Po	olywell: A Spherically Convergent Ion Focus Concept	57
	2.5	Summ	ary	64
	Refe	erences.		65

3	Gas	Discha	arges in Gridded IECs	67
	3.1	Introd	luction	67
	3.2	Types	s of Gas Discharges	67
	3.3	Direct	t Current Glow Discharge Mechanism	69
	3.4	DC D	ischarges in Linear Two Electrode Geometries	
		at Lov	w Pressure	71
		3.4.1	Discharge Characteristics in the IEC	73
	3.5	Disch	arges in the Spherical Geometry Used	
		in an 1	IEC Device	73
		3.5.1	Spherical Geometry Studies	74
		3.5.2	Breakdown Voltage Characteristics	7
		3.5.3	Voltage Versus (<i>pd</i>) Measurements in an IEC	7
		3.5.4	Scaling Laws	8
	3.6	Cyline	drical IECs	80
	3.7	Summ	nary	8
	Refe	erences	-	82
4	TT! - 1			0,
4		n-voita	age Stalk Design for IECS	8. 0'
	4.1	Introd	luction	8. 0'
	4.2		Lustitute of Advanced Energy Kuste University	0.
		4.2.1	Institute of Advanced Energy, Kyoto University,	0
		4 2 2		ð.
		4.2.2	Idano National Environmental Laboratory	0,
		4 2 2	(INEL) Design	8
		4.2.3	University of Illinois at Urbana–Champaign	0/
		121	(UIUC) Designs	8
	4.2	4.2.4	University of Wisconsin (UW), Madison Designs	80
	4.3	A Sta	Ik Design Using "Lessons Learned" from Prior Ones	9
		4.3.1	various Types of Damage Caused	0
		422	to High-voltage Starks	9
		4.3.2	Surface Breakdown	9
		4.3.3	Flashover Across Solid Insulators	9.
		4.3.4	Prebreakdown Conduction Mechanism	9.
		4.3.5	Characteristics of Gap Prebreakdown Currents	9.
		4.3.6	Review of Breakdown Basics	9:
	4.4	High-		9
	4.5	Use of	Bushing for Stalk Design	9
		4.5.1	Non-condenser Bushing	93
	1.5	4.5.2	Condenser Bushings	9
	4.6	Stress		9
	47	4.6.1	Dielectric Materials	9
	4.7	Mixed		10
		4.7.1		102
		4.7.2	E-Field Profiles	10
		4.7.3	Coaxial Cylindrical Fields	104

	4.8	Comp	utation of the Optimum Radius Ratio	
		for Cy	lindrical Geometry	105
		4.8.1	Spherical Electric Fields	105
	4.9	Mecha	anical Stress Due to Electrostatic Charge	107
		4.9.1	Multistage Stalk Design	108
		4.9.2	Hollow Stalk Design	108
		4.9.3	Nonconductive Isolated Stalk Design	111
	4.10	Sum	mary	112
	Refe	rences	·	113
5	IEC	Grid N	Materials and Construction	115
	5.1	Introd	uction	115
	5.2	Grid N	Material Selection	115
	5.3	Effect	of Thermionic Electrons on the Performance	
		of the	IEC Device	117
	5.4	Chord	wire Diagnostic for Electron Current Studies	118
		5.4.1	Studies of Thermionic Emission Effects	
			on the Neutron Production Rate	119
	5.5	Study	of Effects of Asymmetric Heating	
		of the	Cathode Grid	121
		5.5.1	Treatment of Uneven Temperature	
			in Emission Equations	125
	5.6	Grid V	Wire Material Selection	126
	5.7	Const	ruction of Grids	128
		5.7.1	Rapid Prototyping for Grid Construction	129
		5.7.2	Using Carbon Nanotubes to Construct Grids	129
		5.7.3	Multi-grid Design and Fabrication	132
	5.8	Summ	nary	136
	Refe	rences	- 	137
6	Effe	ct of G	rid Geometry on IEC Performance	139
	6.1	Introd	uction	139
	6.2	Transf	formation of Line Source into a Volume Source	143
	6.3	Protor	n/Neutron (P/N) Ratio	144
	6.4	Fusior	n Regimes Inside an IEC Device	146
		6.4.1	Grid Rotation Experiments for Potential	
			Well Studies	150
		6.4.2	Grid Rotation Experimental Setup	152
	6.5	Calcul	lation of Fusion Rate Using a Single Loop Grid	155
		6.5.1	Extension of Study to Entire Grid	
			and Microchannel Effects	159
		6.5.2	Detector Calibration Factors for Various	
			Source Regimes	164
		6.5.3	Calibration Factor for a Converged Core Created	
			by Microchannel Intersection	165
		6.5.4	Calibration Factor for Embedded Source	165

		6.5.5	Calibration Factor for a Volume Source Dominated
			by Microchannels
		6.5.6	Total Calibration Factor
	6.6	Grid (Geometry for Jet Mode Operation
		6.6.1	Characteristics of the Jet Mode Regime
		6.6.2	Jet Mode Discharge Characteristics
		6.6.3	Size Scaling for IEC Jet Mode
	6.7	Devel	opment of a Compact IEC Device
	6.8	Summ	nary
	Refe	erences	
7	Spa	ce Cha	rge-Limited Flow
	7.1	Introd	uction
	7.2	Space	Charge-Limited Flow in a Parallel Plate
		Vacut	1m Diode
	7.3	Child-	-Langmuir Law for Space Charge-Limited Emission
		7.3.1	Geometry of a Parallel Infinite Plate Vacuum Diode
		7.3.2	Derivation of the Child–Langmuir Law
		7.3.3	Limitations of the Child–Langmuir Derivation
	7.4	Langr	nuir Spherical Geometry Problem
		7.4.1	Langmuir's Numerical Solution
		7.4.2	Effect of Grid Radius
		7.4.3	Analytical Solution of Space Charge-Limited Current.
		7.4.4	Cvlindrical System
		7.4.5	Spherical System
	7.5	Exper	imental Observations of Space Charge-Limited
		Flow	in Current IECs
	7.6	Exper	imental Observations of Some Effects of Space
		Charg	e-Limited Flow
		7.6.1	Converged Core Condition with Space
			Charge-Limited Flow
		7.6.2	Flow Convergence Measurement
		7.6.3	Core Density Measurements
	7.7	Summ	nary
	Refe	erences	·
0	-		
8	lon	and El	
	8.1 0 0	Introd	
	8.2	React	Ion Kegime Issues
		8.2.1	
		8.2.2	Low-Pressure Experiments
		8.2.3	Studies of Energy Loss Mechanisms
		8.2.4	Secondary Electron Emission
		8.2.5	Molecular Effects on the Secondary
			Electron Emission

Contents

	8.3	Impurity Effects on SEE	228
		8.3.1 Photoemission Electrons	229
		8.3.2 Field Emission	233
		8.3.3 Tests of Grid Materials	234
	8.4	Summary	235
	Refere	ences	236
•	G P		220
9	Cyline	drical and Other IEC Geometries	239
	9.1		239
	9.2		239
	9.3	Electrically Driven IEC Jet Thruster	244
	9.4	The Dipole-Assisted IEC (DaIEC)	245
	o r	9.4.1 DalEC Experiments	246
	9.5	Microchannel Type IEC Thruster	248
	9.6	A Counter-Streaming Beam Linear IEC	249
	9.7	Multiple Ambipolar Recirculating Beam Line	
		Experiment (MARBLE)	250
		9.7.1 Ion Confinement in MARBLE	250
		9.7.2 Potential Applications for MARBLE	255
	9.8	Shaban's Magnetic-Assisted IEC	255
	9.9	Summary	258
	Refere	ences	259
10	Vario	us Other IEC Concepts and Experiments	261
	10.1	Introduction	261
	10.2	Hirsch Ion Gun Injected Experiment	261
	10.3	SIGFE Six-Gun Experiment at University of Wisconsin	264
	10.4	"Star" Mode with Vane-Type Grids	
	1011	and with Pulsed Operation	267
	10.5	Pulsed Operation	268
	10.6	Getter Pumping of an IEC Device	271
	10.7	Compact IEC Neutron Source for Landmine	_, 1
	1017	Detection at Kyoto University	271
	10.8	Helicon-Injected IEC for ³ He Experiments	271
	10.0	at University of Wisconsin	273
		10.8.1 University of Wisconsin Helicon Source	273
	10.9	The University of Illinois Helicon-IEC Thruster HIPER	274
	10.7	10.0.1 Numerical Simulations for HIIPER	275
	10.10	Flectron-Injected IEC Concepts	270
	10.10	10.10.1 Experimental Observation of POPS Oscillations	280
		10.10.2 Particle Simulation of POPS Plasma	200
		Compression	281
		10.10.2 Denning Tran Concent	201
	10 1 1		203
	IU.II Dofort	Summary	200
	Kelere	alces	280

IEC	Diagnostics
11.1	Introduction
11.2	Neutron Detectors
	11.2.1 Polyethylene-Moderated ³ He Gas Filled
	Neutron Detectors
	11.2.2 BF_3 Neutron Detectors
	11.2.3 Typical Detector Electronic Arrangement
	11.2.4 Operational Regions
	11.2.5 Comparison of Gas Filled Detectors
	11.2.6 Example of a ³ He Detector in an IEC Experiment.
	11.2.7 Calibration of Neutron Detectors
	11.2.8 Comments About Nonlinearity
	in Detection Rates
11.3	Bubble Detectors
11.4	Silver Activation Detectors
11.5	Solid-State Detectors
	11.5.1 Energy Required for the Creation
	of Electron–Hole Pair
	11.5.2 Energy Calibration of the Proton Spectrum
	11.5.3 Understanding the Proton Energy Spectrum
	Recorded with Si Detectors
	11.5.4 Comments About D– ³ He Fueled IEC Reactions
11.6	Noise Levels in Silicon Detectors
11.7	Natural Diamond Detectors
	11.7.1 Electron Noise
	11.7.2 Calculation of the Proton Deflection
	Inside the Detector Port
	11.7.3 Fusion Ion Doppler (FIDO) Diagnostic
11.8	Scintillation Detectors
	11.8.1 Negative Ions in Gridded IEC Devices
	11.8.2 Magnetic Deflection-Energy Analyzer
11.9	Laser-Induced Fluorescence of Well Profiles
11.10	3 Spectroscopic/Langmuir Probe Measurements
	of Ion Energies
	11.10.1 Langmuir Probe Measurements
	11.10.2 Ion Energy Measurements
11.1	Diagnostics for an IEC Plasma Jet
	11.11.1 Gridded Energy Analyzer
	11.11.2 Faraday Cup Diagnostics
11.17	11.11.3 Plasma Force Sensor
	2 Summary
Refe	rences

12	Poter	ntial App	plications	335
	12.1	Introdu	ction	335
	12.2	Neutron	n/Proton/X-ray Sources	335
	12.3	Product	tion of Medical Isotopes	336
		12.3.1	Chemical Explosives Detection Using	
			an IEC Device	339
		12.3.2	Detection of Highly Enriched Uranium (HEU)	340
	12.4	Integra	ted Interrogation System	343
		12.4.1	Design of a Total Integrated Interrogation	
			System for Luggage Inspection	344
	12.5	Integra	ted System Detection Methods	345
		12.5.1	Pulsed Power Supply for a Pulsed IEC	
			Neutron Source	346
		12.5.2	Detector Array for the Integrated System	348
		12.5.3	Fuzzy Logic Analysis System	348
		12.5.4	Adaptation to Container Ships	349
	12.6	IEC Fu	sion Space Propulsion Design Studies	349
	12.7	Magnet	tically Channeled Spherical IEC Array	517
	12.7	(MCSA	A) Concept	352
		12.7.1	Recirculation of Radial Belt Cone Losses	353
		12.7.2	Retrapping of Axial-Loss Particles	354
	12.8	IEC El	ectrically Driven Space Thruster, HIIPER	356
	1210	12.8.1	Comments About Scale-Un to $p=B^{11}$ IEC Space	000
		12.0.1	Power Unit/Thruster	358
	12.9	IEC-Dr	iven Fusion–Fission Hybrids	358
	12.9	12.9.1	Possible Initial Use in Low-Power	550
		12.7.1	Research Reactors	360
		1292	IEC Configuration for the Subcritical	200
		12.9.2	Reactor Design	361
	12.10	Summ	Jarv	362
	Refer	ences		363
				000
13	Reac	tor Conf	finement Theory and IEC Reactor Visions	367
	13.1	Introdu	ction	367
	13.2	Early I	on Thermalization and Energy Balance Studies	
		of Pote	ntial Well-Trapped Plasma	368
	13.3	Bounce	e-Averaged Fokker–Planck (BAFP) Analysis	369
		13.3.1	Comparison of Semi-analytic and BAFP	
			Code Results	371
		13.3.2	Angular Momentum Effects on a Potential Well	373
		13.3.3	Potential Well Structure	374
		13.3.4	Deep Well Studies	375
	13.4	Early T	Theoretical Studies of Potential Well Traps	377
		13.4.1	Analytical Study of the Virtual Electrode Structure .	378
		13.4.2	Experimental Potential Well Studies	379

13.5	Stability Analysis of Non-Maxwellian Trapped Plasma			
	13.5.1 Particle-In-Cell (PIC) Code Stability Analysis			
	13.5.2 Energy Balance Study			
13.6	Beam–Background IEC Fusion Rate Simulations			
13.7	Comments About IEC Reactor Development			
	13.7.1 IEC Aneutronic Fusion			
	13.7.2 Ion Injection with Controlled Angular Momentum			
	13.7.3 The Polywell Approach			
	13.7.4 Multi-Grid IEC			
	13.7.5 Lens-Focused IEC			
	13.7.6 POPS and the Penning Trap IEC			
	13.7.7 Vision of a Future $p-B^{11}$ Fusion Plant			
13.8	Summary			
Refer	erences			