Índice de contenidos

Índice de contenidos				
Índice de figuras ix				
Índice de tablas xvii				
Resumen xix				
Abstract xxi				
1. Introducción	1			
1.1. Propiedades fenomenológicas y microscópicas del estado superconductor	1			
1.2. Materia de vórtices en la fase mixta de superconductores	5			
1.3. Familia de superconductores basados en Fe	8			
1.4. Sistema superconductor FeSe	11			
1.4.1. Estructura de bandas	14			
1.4.2. Estado superconductor en FeSe	20			
1.4.3. Materia de vórtices en FeSe	21			
1.5. Objetivos y organización de esta tesis	23			
2. Técnicas experimentales y de simulación	27			
2.1. Microscopía túnel de barrido	27			
2.1.1. Principio de funcionamiento	28			
2.1.2. Modos de operación de un STM	31			
2.1.3. Implementación en esta tesis	34			
2.2. Espectroscopía de fotoelectrones excitados con rayos X	37			
2.2.1. Principio de funcionamiento	37			
2.2.2. Implementación en esta tesis	39			
2.3. Técnicas de visualización de vórtices en materiales superconductores	40			
2.3.1. Decoración magnética	43			
2.4. Simulaciones de estados electrónicos locales utilizando la teoría del fun-				
cional de la densidad (DFT)	49			

		2.4.1. Método del <i>slab</i>
		2.4.2. Implementación en este trabajo
3.	Imp	oacto de los defectos atómicos en los estados electrónicos de la
	fam	ilia de superconductores FeSe 61
	3.1.	Caracterización de los cristales
	3.2.	Estimación del nivel de dopaje en el volumen y la superficie de las muestras 63
	3.3.	Propiedades estructurales a escala atómica
	3.4.	Propiedades electrónicas a escala atómica
	3.5.	Propiedades electrónicas de los niveles internos
	3.6.	Conclusiones
4.	Car	acterización de los defectos atómicos mediante DFT en la familia
	de s	superconductores FeSe103
	4.1.	Simulaciones de DFT en FeSe: trabajos previos y nuevas aproximaciones
		realizadas en esta tesis
	4.2.	Simulaciones de DFT para FeSe $bulk$ sin defectos considerando interac-
		ciones de vdW y el orden sAFM
	4.3.	Simulaciones de DFT de la superficie de la familia de superconductores
		FeSe
		4.3.1. Slab $3 \times 3 \times 1$ de FeSe sin defectos
		4.3.2. Monocapa de FeSe con una vacancia de Fe (defecto tipo <i>dumbbell</i>)121
		4.3.3. Defectos estructurales que podrían dar lugar a una depresión de
		la altura aparente en las topografías S'I'M en FeSe _{1-x} S _x y K _x FeSe 130
	4.4.	Conclusiones
5.	Est	ructura de vórtices en la familia de superconductores FeSe 145
	5.1.	Experimentos de decoración en muestras de la familia FeSe 147
	5.2.	Propiedades estructurales de la materia de vórtices en cristales de FeSe
		$\sin maclas \dots \dots$
	5.3.	Factor de estructura de la materia de vórtices en muestras de FeSe con
		desorden puntual
	5.4.	Hiperuniformidad en la materia de vórtices desordenada con fluctuacio-
		nes rómbicas de FeSe
	5.5.	Hiperuniformidad en la materia de vórtices desordenada en $NbSe_2 \dots 165$
	5.6.	Mecanismos que podrían inducir fluctuaciones rómbicas en la materia
		de vórtices de FeSe 172
	5.7.	Efecto magnetoelástico en las propiedades estructurales de la materia
		de vórtices de FeSe: simulaciones dinámicas de Langevin

	5.8.	Supresión de la hiperuniformidad en la materia de vórtices nucleada en				
		muestras de $\text{FeSe}_{1-x}S_x$ con maclas	187			
	5.9.	Conclusiones	194			
6.	Distribución de fuerzas de interacción entre vórtices: influencia del					
	desc	orden y el efecto magnetoelástico	197			
	6.1.	Fuerzas de interacción entre vórtices en				
		$Bi_2Sr_2CaCu_2O_{8-\delta}$ con distintos tipos de desorden $\ldots \ldots \ldots \ldots$	198			
	6.2.	Fuerzas de interacción en la materia de vórtices policristalina en $\rm NbSe_2$	211			
	6.3.	Fuerzas de interacción en la materia de vórtices con distorsiones rómbi-				
		cas en FeSe	214			
	6.4.	Conclusiones	220			
7.	Con	clusiones	221			
Bi	Bibliografía					
Pu	Publicaciones asociadas					
Ag	Agradecimientos 2					