Contents

About the Authors	${oldsymbol u}$.	1-8	Reactors Used in Wastewater Treatment 22
Preface	xxiii		Types of Reactors 22
Acknowledgments	xxvii		Hydraulic Characteristics of Reactors 24
Foreword	xxix		Application of Reactors 25
		1-9	Modeling Ideal Flow in Reactors 26
Introduction to Was	tewater		Ideal Flow in Complete-Mix Reactor 26
Treatment and Proc			Ideal Plug-Flow Reactor 27
	,C33	1-10	Introduction to Process Kinetics 29
Analysis 1			Types of Reactions 29
Evolution of Wastewater Treatment	nt 4		Rate of Reaction 30
Treatment Objectives 5			Specific Reaction Rate 31
Current Health and Environmenta			Effects of Temperature on Reaction Rate
Sustainability Considerations 5			Coefficients 31
Evolution of Regulations of Signi	ficance to		Reaction Order 33
Wastewater Engineering 6			Rate Expressions Used in Wastewater
Establishment of Environmental F	Protection		Treatment 34
Agency 6		* * *	Analysis of Reaction Rate Coefficients 39
Important Federal Regulations (6	1-11	Introduction to Treatment Process Modeling 42
Other Federal Regulations 9	_		Batch Reactor with Reaction 43
State and Regional Regulations			Complete-Mix Reactor with Reaction 43 Complete-Mix Reactors in Series with Reaction 44
Characteristics of Wastewater 9			Ideal Plug-Flow Reactor with Reaction 47
Sources of Wastewater 9			Comparison of Complete-Mix and Plug-Flow
Types of Collection Systems 9			Reactors with Reaction 48
Wastewater Constituents 10			Plug-Flow Reactor with Axial Dispersion and
Classification of Wastewater Trea	tment		Reaction 50
Methods 10			Other Reactor Flow Regimes and Reactor
Physical Unit Processes 10			Combinations 51
Chemical Unit Processes 12			Problems and Discussion Topics 53
Biological Unit Processes 12	. 10		•
Application of Treatment Method	.S 12	2	Wastewater Characteristics 57
Wastewater Processing 12 Residuals Processing 13			avastewater Characteristics 5/
Typical Treatment Process Flow 1	Diagrams 13	2-1	Wastewater Characterization 60
Status of Wastewater Treatment in	=		Wastewater Properties and Constituents 60
United States 17	1 tile		Constituents of Concern in Wastewater Treatment 60
Recent Survey Results 18		2-2	Sampling and Analytical Procedures 60
Trends 18			Sampling 63
•	19		Methods of Analysis 65
Mass-Balance Analysis 19	17		Units of Expression for Physical and Chemical
Application of the Mass-Balance	Analysis 21		Parameters 66
rsppiication of the mass-balance	muiyoto 41		Useful Chemical Relationships 66

1-1

1-2

1-3

1-4

1-5

1-6

1-7

2-3	Physical Properties 73
	Sources of Physical Properties 73
	Solids 73
	Particle Size and Particle Size Measurement 76
	Particle Size Distribution 80
	Nanoparticles and Nanocomposites 83
	Turbidity 83
	Relationship Between Turbidity and TSS 85
	Color 85
	Absorption/Transmittance 85
	Temperature 87
	Thermal Energy Content of Wastewater 89
	Conductivity 89
	Density, Specific Gravity, and Specific Weight 89
2-4	Inorganic Nonmetallic Constituents 90
	Sources of Inorganic Nonmetallic Constituents 90
	pH 90
	Chlorides 91
	Alkalinity 92
	Nitrogen 92
	Phosphorus 96
	Sulfur 97
	Gases 98
	Odors 103
2-5	Metallic Constituents 111
	Sources of Metallic Constituents 112
	Importance of Metals 113
	Sampling and Methods of Analysis 114
	Typical Effluent Discharge Limits for Metals 114
2-6	Aggregate Organic Constituents 114
	Sources of Aggregate Organic Constituents 114
	Measurement of Organic Content 114
	Biochemical Oxygen Demand (BOD) 115
	Total and Soluble Chemical Oxygen Demand
	(COD and SCOD) 123
	Total and Dissolved Organic Carbon (TOC and
	DOTC) 123
	. 8
	Theoretical Oxygen Demand (ThOD) 125
	Interrelationships between BOD, COD, and TOC 125
	Oil and Grease 127
	Surfactants 128
	Chemical Energy in Wastewater and Biosolids 129
2-7	Individual Organic Compounds 131
	Sources of Individual Organic Compounds 132
	Priority Pollutants 132
	Volatile Organic Compounds (VOCs) 132
	Disinfection Byproducts 132

Pesticides and Agricultural Chemicals 133

0.0	Unregulated Trace Organic Compounds 133 Analysis of Individual Organic Compounds 133
2-8	Radionuclides in Wastewater 136 Sources of Radionuclide 137
	Units of Expression 137
	Description of Isotopes Found in Wastewater and Sludge 137
	Treatment Technologies for the Removal of Radionuclides 137
2-9	Biological Constituents 139
	Sources of Microorganisms in Wastewater 140
	Enumeration and Identification of
	Microorganisms 144
	Pathogenic Organisms and Prions 151
	Evolving Pathogenic Microorganisms 161
2-10	Toxicity 161
	Sources of Toxicity 161
	Evolution and Application of Toxicity Testing 162
	Toxicity Testing 163
	Analysis of Toxicity Test Results 165 Application of Toxicity Test Results 167
	Identification of Toxicity Components 169
	Problems and Discussion Topics 171
	Troblems and Discussion Topics 171
3	Wastewater Flowrates and
	Constituent Loadings 183
3-1	Wastewater Sources and Flowrates 185
J-1	Municipal Uses of Water 185
	Domestic Wastewater Sources and Flowrates 186
	Strategies for Reducing Interior Water Use
	and Wastewater Flowrates 189
	Water Use in Other Parts of the World 194
	Sources and Rates of Industrial (Nondomestic)
	Wastewater Flows 194
	Variations in Wastewater Flowrates 195
	Long-Term Multiyear Variations Due to Conservation 198
	Impact of Water Conservation on Future Planning 200
2_2	
3-Z	· ·
	Impact of Collection System on Wastewater
	Impact of Collection System on Wastewater Flowrates 200
	Impact of Collection System on Wastewater Flowrates 200 Infiltration/Inflow 200
	Impact of Collection System on Wastewater Flowrates 200 Infiltration/Inflow 200 Inflow into Collection Systems 202
	Impact of Collection System on Wastewater Flowrates 200 Infiltration/Inflow 200 Inflow into Collection Systems 202 Exfiltration from Collection Systems 204
	Impact of Collection System on Wastewater Flowrates 200 Infiltration/Inflow 200 Inflow into Collection Systems 202 Exfiltration from Collection Systems 204 Combined Collection System Flowrates 205
	Impact of Collection System on Wastewater Flowrates 200 Infiltration/Inflow 200 Inflow into Collection Systems 202 Exfiltration from Collection Systems 204

Owner Needs 270 Analysis of Wastewater Flowrate Data 208 Environmental Considerations 270 Statistical Analysis of Flowrate Data 208 Compatibility with Existing Facilities 271 Developing Design Parameters from Flowrate Energy and Resource Requirements 271 Data 211 Cost Considerations 272 Observed Variability in Influent Flowrates 212 Other Design Considerations 273 Analysis of Wastewater Constituents 214 Considerations in Process Selection 274 Wastewater Constituents Discharged By Important Factors in Process Selection 274 Individuals 214 Process Selection Based on Reaction Kinetics 276 Constituent Concentrations Based on Individual Process Selection Based On Mass Transfer 277 Mass Discharges 218 Process Design Based on Loading Criteria 277 Mineral Increase Resulting from Water Use 218 Bench-Scale Tests and Test-Bed Pilot-Scale Composition of Wastewater in Collection Studies 277 Systems 219 Wastewater Discharge Permit Requirements 278 Variations in Constituent Concentrations 219 Statistical Analysis of Constituent Treatment Process Reliability and Selection of 4-3 Concentrations 225 Design Values 279 Observed Variability in Influent Constituent Variability in Wastewater Treatment 280 Concentrations 225 Selection of Process Design Parameters to Meet Discharge Permit Limits 286 Analysis of Constituent Mass Loading Data 226 Performance of Combined Processes 289 Simple Average 226 Flow-Weighted Average 226 Elements of Process Design 291 Mass Loadings 229 Design Period 291 Effect of Mass Loading Variability on Treatment Treatment Process Flow Diagrams 291 Plant Performance 231 Process Design Criteria 291 Preliminary Sizing 292 **3-6** Selection of Design Flowrates and Mass Solids Balance 293 Loadings 232 Plant Layout 294 Design Flowrates 234 Design Mass Loadings 240 Plant Hydraulics 295 Energy Management 296 Flow and Constituent Load Equalization 241 Description/Application of Flow Equalization 242 Implementation of Wastewater Management Programs 297 The Benefits of Flow Equalization 243 Facilities Planning 297 Design Considerations 243 Design 297 Equalization of Constituent Mass Loading Value Engineering 298 Rates 253 Construction 298 Equalization of Sludge and Biosolids Processing Facilities Startup and Operation 299 Return Flows 253 Financing 299 **Problems and Discussion Topics** 254 Long-Term Municipal Debt Financing 299 Non-Debt Financing 300 **Wastewater Treatment** Leasing 300 **Process Selection, Design,** Privatization 300 Problems and Discussion Topics 300 and Implementation 263 Planning for New and Upgrading Existing Wastewater Treatment Plants 265 **Physical Unit Processes** 305 Need to Upgrade Existing Wastewater Treatment 5-1 Screening 310

Classification of Screens 310

Coarse Screens (Bar Racks) 312

Screenings Characteristics and Quantities 311

Plants 265

Plants 266

Planning for New Wastewater Treatment

Treatment Process Design Considerations 266

Fine Screens	318
Microscreens	323
Screenings Ha	andling, Processing, and
Disposal	324

Coarse Solids Reduction 325 Comminutors 325 Macerators 326 Grinders 327 Design Considerations 327

Mixing and Flocculation 327 Continuous Rapid Mixing in Wastewater Treatment 328 Continuous Mixing in Wastewater Treatment 329 Energy Dissipation in Mixing and Flocculation 330

> Time Scale in Mixing 332 Types of Mixers Used for Rapid Mixing

in Wastewater Treatment 332 Types of Mixers Used for Maintaining Solids in

Suspension in Wastewater Treatment and Chemical Mixing 335

Types of Mixers Used for Flocculation in Wastewater Treatment 338 Types of Mixers Used for Continuous Mixing in Wastewater Treatment 341

New Developments in Mixing Technology 344

Gravity Separation Theory 344 Description 345 Particle Settling Theory 346 Discrete Particle Settling 350 Flocculent Particle Settling 354 Inclined Plate and Tube Settling 356 Hindered (Zone) Settling 360 Compression Settling 364 Gravity Separation in an Accelerated Flow

Grit Removal 365 Wastewater Grit Characteristics 366 Grit Separators for Wastewater 370 Grit Separators for Combined Wastewater and Stormwater 379 Grit Washing 380 Grit Drying 382 Disposal of Grit 382 Solids (Sludge) Degritting 382

Field 364

Primary Sedimentation 382 Description 383 Sedimentation Tank Performance 391 Design Considerations 393

Characteristics and Ouantities of Solids (Sludge) and Scum 397

5-7 High-Rate Clarification 398 Enhanced Particle Flocculation 398 Analysis of Ballasted Particle Flocculation and Settling 399 Process Application 401

Flotation 403 Description 404 Design Considerations for Dissolved-Air Flotation Systems 406

New Approaches for Primary Treatment 408 Microscreening of Raw Wastewater 409 Charged Bubble Flotation 409 Primary Effluent Filtration 410

Gas Liquid Mass Transfer 411 Historical Development of Gas Transfer Theories 411 The Two-Film Theory of Gas Transfer 412 Absorption of Gases Under Turbulent Conditions 415 Absorption of Gases Under Ouiescent Conditions 417 Desorption (Removal) of Gases 418

Aeration Systems 419 5-11 Oxygen Transfer 419 Evaluation of Alpha (α) Correction Factor 421 Types of Aeration Systems 424 Diffused-Air Aeration 424 Mechanical Aerators 436 Energy Requirement for Mixing in Aeration Systems 439 Generation and Dissolution of High-Purity Oxygen 440 Postaeration 443 Problems and Discussion Topics 448

Chemical Unit Processes 455

Role of Chemical Unit Processes in Wastewater Treatment 458 Applications of Chemical Unit Processes 458 Considerations in the Use of Chemical Unit Processes 459

Fundamentals of Chemical Coagulation 460 Basic Definitions 461 Nature of Particles in Wastewater 461 Development and Measurement of Surface Charge 462

Particle-Particle Interactions 463 Particle Destabilization and Aggregation with Polyelectrolytes 466 Particle Destabilization and Removal with Hydrolyzed Metal Ions 468

Chemical Precipitation for Improved Plant Performance 473 Chemical Reactions in Wastewater Precipitation Applications 474 Chemically Enhanced Primary Treatment (CEPT) 477 Independent Physical-Chemical Treatment 478 Estimation of Sludge Quantities from Chemical Precipitation 479

Chemical Phosphorus Removal 481 Chemicals Used for Phosphorus Removal 481 Phosphorus Removal from the Liquid Stream with Metal Salts 487 Phosphorus Removal from the Liquid Stream with Calcium 489 Strategies for Chemical Phosphorus Removal 491

Chemical Formation of Struvite for Ammonium and Phosphorus Removal 492 Chemistry of Struvite Formation 493 Control and/or Mitigation Measures for the Formation of Struvite 496 Enhanced Struvite Formation for Nutrient Removal 496

6-6 Chemical Precipitation for Removal of Heavy Metals and Dissolved Substances 498 Precipitation Reactions 498 Co-precipitation with Phosphorus 500

Conventional Chemical Oxidation 501 Applications for Conventional Chemical Oxidation 501 Oxidants Used in Chemical Oxidation Processes 501 Fundamentals of Chemical Oxidation 503 Chemical Oxidation of Organic Constituents 508 Chemical Oxidation of Ammonium 508 Chemical Oxidation Process Limitations 510

Advanced Oxidation 510 Applications for Advanced Oxidation 510 Processes for Advanced Oxidation 513 Basic Considerations for Advanced Oxidation Processes 517 Advanced Oxidation Process Limitations 520

Photolysis 521 Applications for Photolysis 521 Photolysis Processes 522 Basic Considerations for Photolysis Processes 522 Photolysis Process Limitations 528

6-10 Chemical Neutralization, Scale Control, and Stabilization 529 pH Adjustment 529 Analysis of Scaling Potential 530 Scale Control 535 Stabilization 536

6-11 Chemical Storage, Feeding, Piping, and Control Systems 536 Chemical Storage and Handling 536 Dry Chemical Feed Systems 538 Liquid Chemical Feed Systems 542 Gas Chemical Feed Systems 542 Initial Chemical Mixing 543 **Problems and Discussion Topics** 544

Fundamentals of Biological Treatment 551

Overview of Biological Wastewater Treatment 555 Objectives of Biological Treatment 555 Role of Microorganisms in Wastewater Treatment 555 Types of Biological Processes for Wastewater Treatment 556

7–2 Composition and Classification of Microorganisms 561 Cell Components 562 Cell Composition 564 Environmental Factors 564 Microorganism Identification and Classification 565 Use of Molecular Tools 568

7-3 Introduction to Microbial Metabolism 571 Carbon and Energy Sources for Microbial Growth 571 Nutrient and Growth Factor Requirements 573

Bacterial Growth, Energetics, and Decay 573 Bacterial Reproduction 574 Bacterial Growth Patterns in a Batch Reactor 574 Bacterial Growth and Biomass Yield 575 Measuring Biomass Growth 575 Estimating Biomass Yield and Oxygen Requirements from Stoichiometry 576 Estimating Biomass Yield from Bioenergetics 579

Stoichiometry of Biological Reactions 586

xii

	Biomass Synthesis Yields for Different
	Growth Conditions 587
	Biomass Decay 587
	Observed versus Synthesis Yield 588
7-5	Microbial Growth Kinetics 588
, ,	Microbial Growth Kinetics Terminology 589
	Rate of Utilization of Soluble Substrates 589
	Other Rate Expressions for Soluble Substrate
•	Utilization 591
	Rate of Soluble Substrate Production from
	Biodegradable Particulate Organic
	Matter 591
	Net Biomass Growth Rate 592
	Kinetic Coefficients for Substrate Utilization and
	Biomass Growth 593
	Rate of Oxygen Uptake 593
	Effects of Temperature 594
	Total Volatile Suspended Solids and Active
	Biomass 594
	Net Biomass Yield and Observed Yield 595
7-6	Modeling Suspended Growth Treatment
	Processes 597
	Description of Suspended Growth Treatment
•	Processes 597
	Solids Retention Time 597
	Biomass Mass Balance 598
•	Substrate Mass Balance 600
	Mixed Liquor Solids Concentration and Solids
•	Production 600
	The Observed Yield 603
	Oxygen Requirements 603
	Design and Operating Parameters 606
	Process Performance and Stability 607
	Modeling Plug-Flow Reactors 609
7-7	Substrate Removal in Attached Growth Treatment
	Process 610
	Biofilm Characteristics 611
	Biomass Characterization 611
	Mechanistic Models 612
	Substrate Flux in Biofilms 612
	Substrate Mass Balance for Biofilm 613
	Substrate Flux Limitations 613
<i>7</i> -8	Aerobic Oxidation 615
	Process Description 615
	Microbiology 615
	Process Operation Issues 616
	Stoichiometry of Aerobic Biological Oxidation 617
	Growth Kinetics 617
	Environmental Factors 618

7-9	Biological Oxidation of Inorganic Nitrogen 618
	Process Description 619
	Microbiology 619
	Stoichiometry of Biological Nitrification 622
	Nitification Kinetics 624
	AOB Kinetics 626
	NOB Kinetics 627
	Environmental Factors 628
<i>7</i> -10	Denitrification 631
	Process Description 632
	Microbiology 633
	Stoichiometry of Biological Denitrification and
	Denitritation 634
	Organic Substrate Requirements for Denitrification
	and Denitritation 635
	Denitrification Kinetics 637
	Environmental Factors 640
<i>7</i> -11	Anaerobic Ammonium Oxidation 640
	Process Description 640
	Microbiology 641
	Anammox Stoichiometry 641
	Growth Kinetics 644
	Environmental Factors 645
<i>7</i> -12	Greenhouse Gas from Biological Nitrogen
	Transformations 645
	Source of Nitrous Oxide Emissions 645
	Nitrous Oxide Production Pathways 646
<i>7</i> -13	Enhanced Biological Phosphorus Removal 648
	Process Description 648
	Processes Occurring in the Anaerobic Zone 650
	Processes Occurring in a Downstream Aerobic
	or Anoxic Zone 650
	Microbiology 651
	Other Process Considerations for EBPR 652
	Stoichiometry of Enhanced Biological Phosphoru
	Removal 653
	Growth Kinetics 655
	Environmental Factors 655
7-14	Anaerobic Fermentation and Oxidation 655
	Process Description 656
	Microbiology 657
	Stoichiometry of Anaerobic Fermentation and
	Oxidation 659
	Process Kinetics 660
	Environmental Factors 663
<i>7</i> -15	Biological Removal of Toxic and Recalcitrant
	Organic Compounds 663
	Development of Biological Treatment
	Methods 664

	Aerobic Biodegradation 665
	Abiotic Losses 666
8001	Modeling Biotic and Abiotic Losses 669
-16	Biological Removal of Trace Organic
	Compounds 671
	Removal of Trace Organic Compounds 672
	Steady-State Fate Model 672
'-1 <i>7</i>	Biological Removal of Heavy Metals 674
	Problems and Discussion Topics 674
8	Suspended Growth Biological
	Treatment Processes 697
8-1	Introduction to the Activated-Sludge Process 700
	Historical Development of Activated Sludge
	Process 701
	Basic Process Description 701
	Evolution of the Conventional Activated-Sludge
	Process 702
	Nutrient Removal Processes 706
8-2	Tradition Characterization 15.
	Key Wastewater Constituents for Process
	Design 707
	Measurement Methods for Wastewater
	Characterization 712
	Recycle Flows and Loadings 716
8-3	Fundamentals of Process Selection, Design, and
	Control 717
	Overall Considerations in Treatment Process
	Implementation 717
	Important Factors in Process Selection and
	-
	Design 717
	Process Control 726
	Operational Problems in Activated Sludge Systems
	with Secondary Clarifiers 732
	Operational Problems with MBR Systems 738
8-4	Selector Types and Design Consideration 738
	Selector Types and Design Considerations 739
	Poor Settling Even with Use of Selector 741
8-5	
0-5	Activated Sludge Process Design
	Considerations 742
	Steady-State Design Approach 742
	Use of Simulation Model 744
	Model Matrix Format, Components, and
	Reactions 747
	Other Simulation Model Applications 751
8-6	Processes for Bod Removal and Nitrification 752
	Overview of BOD Removal and Nitrification
	Processes 752

General Process Design Considerations 754 Complete-Mix Activated-Sludge Process Design 754 Sequencing Batch Reactor Process Design 771 Staged Activated-Sludge Process Design 782 Alternative Processes for BOD Removal and Nitrification 786 Processes for Biological Nitrogen Removal 795 8-7 Process Development 796 Overview of Types of Biological Nitrogen-Removal Processes 797 General Process Design Considerations 802 Preanoxic Denitrification Processes 804 Postanoxic Denitrification Processes 831 Low DO and Cyclic Nitrification/Denitrification Processes 833 Alternative Process Configurations for Biological Nitrogen Removal 838 Denitrification with External Carbon Addition 848 Process Control and Performance 860 Processes for Enhanced Biological Phosphorus Removal 861 Process Development 861 Overview of Enhanced Biological Phosphorus Removal Processes 862 General Process Design Considerations 864 Operational Factors That Affect Enhanced Biological Phosphorus Removal 878 Enhanced Biological Phosphorus Removal Process Design 880 Provision for Chemical Addition 883 Process Control and Performance Optimization 884 Aeration Tank Design for Activated-Sludge Processes 885 Aeration System 885 Aeration Tanks and Appurtenances 886 Analysis of Liquid-Solids Separation for 8-10 Activated-Sludge Processes with Clarifiers 889 Solids Separation by Secondary Clarifiers 889 Assessing Sludge Thickening Characteristics 891 Clarifier Design Based on Solids Flux Analysis 893 Clarifier Design Based on State Point Analysis 900 8-11 Design Considerations for Secondary Clarifiers 906

Types of Sedimentation Tank 906

Sidewater Depth 910

xiv

Flow Distribution 910
Tank Inlet Design 910
Weir Placement and Loading 912
Scum Removal and Management 912

Solids Separation for Membrane Bioreactors 913 Design Parameter 913 Membrane Properties 914 Membrane Design and Operating Characteristics 917 Membrane Usage 917 Membrane Fouling Issues 917 Problems and Discussion Topics 919

Attached Growth and **Combined Biological Treatment Processes** 941

- Introduction to Attached Growth Processes Types of Attached Growth Processes 943 Mass Transfer Limitations in Attached Growth Processes 947
- Nonsubmerged Attached Growth Processes 947 General Process Description 947 Trickling Filter Classification and Applications 950 Advantages and Disadvantages of Trickling Filters 953 Physical Facilities for Trickling Filters 954 Design Considerations for Physical Facilities 957 Process Design Considerations for BOD

Removal 968 Process Analysis for BOD Removal 972 Process Analysis for Nitrification 978

- Sequential Combined Trickling Filter and Suspended Solids Processes 987 Process Development 987 Process Applications 987 Trickling Filter/Solids Contact Process 988 Trickling Filter/Activated Sludge Process 990 Series Trickling-Filter Activated-Sludge Process 997
- Integrated Fixed-Film Activated Sludge Process 997 Process Development 998 Process Applications 1000 IFAS Process Advantages and Disadvantages 1002

Design of Physical Facilities 1003 IFAS Process Design Analysis 1005 BOD and Nitrification Design Approach

- Moving Bed Biofilm Reactor (MBBR) Background 1015 MBBR Process Applications 1016 MBBR Process Advantages and Disadvantages 1016 Design of Physical Facilities 1019 MBBR Process Design Analysis 1020 BOD Removal and Nitrification Design
- Submerged Aerobic Attached Growth Processes 1026 Process Development 1026 Process Applications 1027 Process Advantages and Disadvantages 1027 Design of Physical Facilities 1029 BAF Process Design Analysis 1031 FBBR Process Design Analysis 1034
- Attached Growth Denitrification Processes 1034 Process Development 1034 Description and Application of Attached Growth Denitrification Processes 1035 Process Design Analysis of Postanoxic Attached Growth Denitrification 1037 Operational Considerations for Postanoxic Attached Growth Denitrification .1041
- Emerging Biofilm Processes 1045 Membrane Biofilm Reactors 1045 Biofilm Airlift Reactors 1046 Aerobic Granules Reactor 1046 **Problems and Discussion Topics** 1046

10 Angerobic Suspended and **Attached Growth Biological Treatment Processes** 1059

- The Rationale for Anaerobic Treatment 1061 Advantages of Anaerobic Treatment Processes 1061 Disadvantages of Anaerobic Treatment Processes 1062 Summary Assessment 1063
- Development of Anaerobic Technologies Historical Developments in Liquefaction Treatment of Wastewater Sludges 1065 Treatment of High Strength Wastes 1066 Future Developments 1067

Available Anaerobic Technologies 1067 Types of Anaerobic Technologies 1067 Application of Anaerobic Technologies 1071

- Fundamental Considerations in the Application of 10-4 Anaerobic Treatment Processes 1075 Characteristics of the Wastewater 1075 Pretreatment of Wastewater 1080 Expected Gas Production 1083 Energy Production Potential 1085 Sulfide Production 1088 Ammonia Toxicity 1090
- Design Considerations for Implementation of Anaerobic Treatment Processes 1090 Treatment Efficiency Needed 1091 General Process Design Parameters 1091 Process Implementation Issues 1093
- Process Design Examples 1095 10-6 Upflow Anaerobic Sludge Blanket Process 1095 Anaerobic Contact Process 1103 Use of Simulation Models 1107
- Codigestion of Organic Wastes with Municipal 10-7 Sludge 1108 Problems and Discussion Topics 1109

Separation Processes for Removal of Residual Constituents 1117

- Need for Additional Wastewater Treatment 1120
- Overview of Technologies Used for Removal of Residual Particulate and Dissolved Constituents 1120 Separation Processes Based on Mass Transfer 1120 Transformation Based on Chemical and Biological Processes 1122 Application of Unit Processes for Removal of Residual Constituents 1123
- Unit Processes for the Removal of Residual 11-3 Particulate and Dissolved Constituents 1123 Typical Process Flow Diagrams 1124 Process Performance Expectations 1125
- Introduction to Depth Filtration 1129 Description of the Filtration Process 1129 Filter Hydraulics 1134 Modeling the Filtration Process 1142
- 11-5 Depth Filtration: Selection and Design Considerations 1144

Available Filtration Technologies 1144 Performance of Different Types of Depth Filters 1146 Considerations Related to Design and Operation of Treatment Facilities 1156 Selection of Filtration Technology 1158 Design Considerations for Granular Medium Filters 1161

- Surface Filtration 1171 11-6 Available Filtration Technologies 1172 Description of the Surface Filtration Process 1175 Performance of Surface Filters 1178 Design Considerations 1180 Pilot Plant Studies 1180
- Membrane Filtration Processes 1181 11-7 Membrane Process Terminology Membrane Process Classification 1182 Membrane Containment Vessels 1185 Operational Modes for Pressurized Configurations 1189 Process Analysis for MF and UF Membranes 1190 Operating Strategies for MF and UF Membranes 1192 Process Analysis for Reverse Osmosis 1193 Membrane Fouling 1198 Control of Membrane Fouling 1201 Application and Performance of Membranes Forward Osmosis: An Emerging Membrane Technology 1212 Pilot-Plant Studies for Membrane Applications 1214 Management of Retentate 1215
- Electrodialysis 1217 11-8 Description of the Electrodialysis Process 1217 Electrodialysis Reversal 1218 Power Consumption 1220 Operating Considerations 1222 Electrodialysis Versus Reverse Osmosis 1223
- Adsorption 1224 11-9 Applications for Adsorption Types of Adsorbents 1224 Fundamentals of Adsorption Processes 1227 Development of Adsorption Isotherms 1227 Adsorption of Mixtures 1232 Adsorption Capacity 1232 Small Scale Column Tests 1240 Analysis of Powdered Activated Carbon Contactor 1243

11-10

Activated Sludge-Powdered Activated Carb
Treatment 1244
Carbon Regeneration 1245
Adsorption Process Limitations 1245
Gas Stripping 1245
Analysis of Gas Stripping 1245
Design of Stripping Towers 1256
Air Stripping Applications 1261
Ion Exchange 1261
Ion Exchange Materials 1262

In Exchange 1261
Ion Exchange Materials 1262
Typical Ion Exchange Reactions 1263
Exchange Capacity of Ion Exchange Resins 1264
Ion Exchange Chemistry 1266
Application of Ion Exchange 1270
Operational Considerations 1275

11-12 Distillation 1275
Distillation Processes 1276
Performance Expectations in Reclamation
Applications 1277
Operating Problems 1278
Disposal of Concentrated Waste 1278
Problems and Discussion Topics 1278

12 Disinfection Processes 1291

12-1 Introduction to Disinfectants Used in
Wastewater 1294
Characteristics for an Ideal Disinfectant 1294
Disinfection Agents and Methods 1294
Mechanisms Used to Explain Action of
Disinfectants 1296
Comparison of Disinfectants 1297

12-2 Disinfection Process Considerations 1297
Physical Facilities Used for Disinfection 1297
Factors Affecting Performance 1300
Development of the CT Concept for Predicting
Disinfection Performance 1306
Application of the CT Concept to Wastewater
Disinfection 1307
Performance Comparison of Disinfection
Technologies 1308

12-3 Disinfection with Chlorine 1312
Characteristics of Chlorine Compounds 1312
Chemistry of Chlorine Compounds 1314
Breakpoint Reaction with Chlorine 1316
Effectiveness of Free and Combined Chlorine
as Disinfectants 1320
Measurement and Reporting of Disinfection Process
Performance 1322

Factors that Affect Disinfection of Wastewater
with Chlorine Compounds 1323

Modeling the Chlorine Disinfection Process 1328

Required Chorine Dosages for Disinfection 1329

Formation and Control of Disinfection Byproducts
(DBPs) 1333

Environmental Impacts of Disinfection with

12-4 Disinfection with Chlorine Dioxide 1337
Characteristics of Chlorine Dioxide 1337
Chlorine Dioxide Chemistry 1337
Effectiveness of Chlorine Dioxide as a
Disinfectant 1338
Modeling the Chlorine Dioxide Disinfection
Process 1338
Required Chlorine Dioxide Dosages for
Disinfection 1338
Byproduct Formation and Control 1338
Environmental Impacts 1339

Chlorine 1336

12-5 Dechlorination 1339
Dechlorination of Treated Wastewater
with Sulfur Dioxide 1339
Dechlorination of Treated Wastewater with Sodium
Based Compounds 1341
Dechlorination with Hydrogen Peroxide 1342
Dechlorination with Activated Carbon 1342
Dechlorination of Chlorine Dioxide with Sulfur
Dioxide 1342

12-6 Design of Chlorination and Dechlorination
Facilities 1343
Sizing Chlorination Facilities 1343
Disinfection Process Flow Diagrams 1344
Dosage Control 1347
Injection and Initial Mixing 1349
Chlorine Contact Basin Design 1349
Assessing the Hydraulic Performance of Existing
Chlorine Contact Basins 1359
Outlet Control and Chlorine Residual
Measurement 1365
Chlorine Storage Facilities 1365
Chemical Containment Facilities 1366
Dechlorination Facilities 1366

12-7 Disinfection with Ozone 1367
Ozone Properties 1367
Ozone Chemistry 1368
Effectiveness of Ozone as a Disinfectant 1369
Modeling the Ozone Disinfection Process 1369
Required Ozone Dosages for Disinfection 1372
Estimation of the CT Value 1372

Byproduct Formation and Control 1374

Environmental Impacts of Using Ozone 1374

Other Benefits of Using Ozone 1375

Ozone Disinfection Systems Components 1375

Peracetic Acid 1379
Use of Peroxone as a Disinfectant 1380
Sequential Chlorination 1381
Combined Chemical Disinfection Processes 1381

Combined Chemical Disinfection Processes 1381 Ultraviolet (UV) Radiation Disinfection 1382 Source of UV Radiation 1383 Types of UV Lamps 1384 UV Disinfection System Configurations 1387 Ouartz Sleeve Cleaning Systems 1390 Mechanism of Inactivation by UV Irradiation 1391 Germicidal Effectiveness of UV Irradiation 1393 Estimating UV Dose 1399 Ultraviolet Disinfection Guidelines 1404 Relationship of UV Guidelines to UV System Design 1405 Validation of UV Reactor or System Performance 1405 Factors Effecting UV System Design 1413 Selection and Sizing of a UV Disinfection System 1420 Use of Spot-Check Bioassay to Validate UV System Performance 1422 Troubleshooting UV Disinfection Systems 1426

Environmental Impacts of UV Radiation
Disinfection 1428

12-10 Disinfection By Pasteurization 1428
Description of the Pasteurization Process 1428
Thermal Disinfection Kinetics 1429
Germicidal Effectiveness of Pasteurization 1433

Regulatory Requirements 1433
Application of Pasteurization for
Disinfection 1433

Problems and Discussion Topics 1434

13 Processing and Treatment of Sludges 1449

13-1 Sludge Sources, Characteristics, and Quantities 1453
Sources 1453
Characteristics 1454
Quantities 1456

13-2 Regulations for the Reuse and Disposition of Sludge in the United States 1461

Land Application 1461

Surface Disposition 1462

Pathogen and Vector Attraction Reduction 1462

Incineration 1463

13-3 Sludge Processing Flow Diagrams 1466
13-4 Sludge and Scum Pumping 1467
Pumps 1467

Headloss Determination 1475 Sludge Piping 1480

Preliminary Sludge Processing Operations 1481
Grinding 1481
Screening 1482
Degritting 1482
Blending 1483
Storage 1484

13-6 Thickening 1486

Application 1486

Description and Design of Thickeners 1487

13-7 Introduction to Sludge Stabilization 1497

13-8 Alkaline Stabilization 1498
Chemical Reactions in Lime Stabilization 1498
Heat Generation 1499
Application of Alkaline Stabilization
Processes 1500

13-9 Anaerobic Digestion 1502

Process Fundamentals 1503

Description of Mesophilic Anaerobic Digestion

Processes 1504

Process Design for Mesophilic Anaerobic

Digestion 1506

Selection of Tank Design and Mixing System Methods for Enhancing Sludge Loading and Digester Performance 1520

Gas Production, Collection, and Use 1520 Digester Heating 1525

Advanced Anaerobic Digestion 1530

Sludge Pre-treatment for Anaerobic Digestion 1533

Co-digestion with Other Organic Waste Material 1538

13-10 Aerobic Digestion 1541

Process Description 1542

Conventional Air Aerobic Digestion 1544

Dual Digestion 1549

Autothermal Thermophilic Aerobic Digestion
(ATAD) 1549

xix

Improved ATAD Systems1553High-Purity Oxygen Digestion1553Problems and Discussion Topics1554

14 Biosolids Processing, Resource Recovery and Beneficial Use 1561

14-1 Chemical Conditioning 1564
Polymers 1564
Factors Affecting Polymer Conditioning 1565
Polymer Dosage Determination 1565
Mixing 1566
Conditioning Makeup and Feed 1567

14-2 Dewatering 1567
Overview of Dewatering Technologies 1568
Centrifugation 1571
Belt-Filter Press 1574
Rotary Press 1577
Screw Press 1580
Filter Presses 1583
Electro-Dewatering 1585
Sludge Drying Beds 1588
Reed Beds 1592
Lagoons 1593

14-3 Heat Drying 1593

Heat-Transfer Methods 1593

Process Description 1595

Product Characteristics and Use 1599

Product Transport and Storage 1600

Fire and Explosion Hazards 1601

Air Pollution and Odor Control 1601

14-4 Advanced Thermal Oxidation 1602
Fundamental Aspects of Complete
Combustion 1603
Multiple-Hearth Incineration 1606
Fluidized-Bed Incineration 1608
Energy Recovery from Thermal Oxidation 1610
Coincineration with Municipal Solid Waste 1611
Air-Pollution Control 1612

14-5 Composting 1613

Process Microbiology 1614

Composting Process Stages 1614

Composting Process Steps 1614

Composting Methods 1616

Design Considerations 1618

Co-composting with Municipal Solid Wastes 1620

Public Health and Environmental Issues 1620

14-6 Sludge and Biosolids Conveyance and Storage 1621

Conveyance Methods 1621

Storage 1622

14-7 Solids Mass Balances 1623
Preparation of Solids Mass Balances 1623
Performance Data for Solids Processing
Facilities 1623
Impact of Return Flows and Loads 1623

14-8 Resource Recovery from Sludges and
Biosolids 1636
Recovery of Nutrients 1637
Agricultural Land Application 1637
Non-Agricultural Land Applications 1637

14-9 Energy Recovery from Sludge and Biosolids 1638

Energy Recovery through Anaerobic

Digestion 1638

Energy Recovery by Thermal Oxidation 1639

Energy Recovery from Dried Material through

Gasification and Pyrolysis 1639

Production of Oil and Liquid Fuel 1640

Application of Biosolids to Land 1640
Benefits of Land Application 1640
U.S. EPA Regulations for Beneficial Use and
Disposal of Biosolids 1640
Management Practices 1641
Site Evaluation and Selection 1643
Design Loading Rates 1644
Application Methods 1648
Application to Dedicated Lands 1650
Landfilling 1651
Problems and Discussion Topics 1651

15 Plant Recycle Flow Treatment and Nutrient Recovery 1659

15-1 Sidestream Identification and
Characterization 1661
Sidestreams Derived from Primary
and Secondary Sludges 1662
Sidestreams Derived from Fermented Primary
and Digested Primary and Secondary
Sludges 1662

15-2 Mitigating Recycle Flows and Loads 1667 Sidestream Pretreatment 1667 Equalization of Sidestream Flows and Loads 1667

15-3 Reduction of Suspended Solids and Colloidal
Material 1673
Sidestreams Derived from Sludge Thickening 1673

Sidestreams Derived from Biosolids
Dewatering 1673
Removal of Colloidal Matter 1674

Physiochemical Processes for Phosphorus
Recovery 1674
Description of the Crystallization
Process 1675
Recovery of Phosphorus as Magnesium Ammonium
Phosphate (Struvite) 1678
Recovery of Phosphorus as Calcium
Phosphate 1683
Phosphorus Recovery from Mainstream
Processes 1684

15-5 Physiochemical Processes for Ammonia Recovery and Destruction 1686

Recovery of Ammonia by Air Stripping
and Acid Absorption 1686

Recovery of Ammonia by Steam Stripping 1690
Air Stripping with Thermocatalytic Destruction of Ammonia 1692

15-6 Beneficial Use of Recovered Phosphate and
Ammonium Products 1693

Magnesium Ammonium Phosphate Hexahydrate
(Struvite) 1693

Calcium Phosphate (Hydroxapatite) 1694

Ammonium Sulfate 1694

Ammonium Nitrate 1695

15-7 Biological Removal of Nitrogen from Sidestreams 1696
Nitrogen Removal Processes 1696
Separate Treatment Processes for Nitrogen Removal 1697
Integrated Sidestream-Mainstream Treatment and Bioaugmentation 1699

15-8 Nitrification and Denitrification Processes 1700

Fundamental Process Considerations 1700

Treatment Processes 1703

15-9 Nitritation and Denitritation Processes 1706

Fundamental Process Considerations 1706

Treatment Processes 1709

Partial Nitritation and Anaerobic Ammonium
Oxidation (Deammonification) Processes 1709
Fundamental Process Considerations 1710
Treatment Processes 1715

15-11 Process Design Considerations for Biological
Treatment Processes 1715
Sidestream Characteristics and Treatment
Objectives 1716

Design Loading and Load Equalization 1717
Sidestream Pretreatment 1717
Sidestream Reactor Volume 1718
Aeration System 1718
Sludge Retention Time and Mixed Liquor Suspended Solids Concentration 1721
Chemical Requirements 1721
Operating Temperature and pH 1723
Operating pH 1723
Energy Balance to Determine Reactor Cooling Requirements 1723
Problems and Discussion Topics 1728

16 Air Emissions from Wastewater Treatment Facilities and Their Control 1737

16-1 Types of Emissions 1739
 16-2 Regulatory Requirements 1739
 Ambient Air Quality and Attainment Status 1739
 Preconstruction and Operating Permitting

Programs 1741
Stationary Source Control Technology
Reauirements 1741

16-3 Odor Management 1742
Types of Odors 1742
Sources of Odors 1742
Measurement of Odors 1745
Odor Dispersion Modeling 1746
Movement of Odors from Wastewater
Treatment Facilities 1746
Strategies for Odor Management 1747
Odor Treatment Methods 1751

Selection and Design of Odor Control
Facilities 1760
Design Considerations for Chemical
Scrubbers 1760
Design Considerations for Odor Control
Biofilters 1762

Control of Volatile Organic Carbon
Emissions 1767
Physical Properties of Selected VOCs 1768
Emission of VOCs 1768
Mass Transfer Rates for VOCs 1771
Mass Transfer of VOCs from Surface
and Diffused-Air Aeration Processes 1771

Control Strategies for Vo	OCs	1774
Treatment of Off-Gases	177	4

- 16-5 Emissions from the Combustion
 Of Gases And Solids 1777
 Sources of Fuels 1777
 Combustion Systems Used at Wastewater
 Treatment Plants 1778
 Emissions of Concern from Combustion
 Sources 1779
 Flaring of Digester Gas 1780
- 16-6 Emission of Greenhouse Gases 1784
 Framework for Greenhouse Gases Reduction 1784
 Assessment Protocols 1784
 Opportunities for GHG Reduction at Wastewater
 Treatment Facilities 1791
 Problems and Discussion Topics 1793

17 Energy Considerations in Wastewater Management 1797

- 17-1 Factors Driving Energy Management 1799

 Potential for Energy Cost Savings 1799

 Energy Supply Reliability 1800

 Considerations for Sustainability 1800
- 17-2 Energy in Wastewater 1800

 Chemical Energy 1800

 Thermal Energy 1804

 Hydraulic Energy 1805
- 17-3 Fundamentals of a Heat Balance 1807

 Concept of a Heat Balance 1807

 Preparation of a Heat Balance 1808
- 17-4 Energy Usage in Wastewater Treatment
 Plants 1809
 Types of Energy Sources Used at Wastewater
 Treatment Facilities 1810
 Energy Use for Wastewater Treatment 1810
 Energy Use by Individual Treatment
 Processes 1810
 Advanced and New Wastewater Treatment
 Technologies 1811
- 17-5 Energy Audits and Benchmarking 1813

 Benchmarking Energy Usage 1814

 Benchmarking Protocol 1815
- 17-6 Recovery and Utilization of Chemical
 Energy 1819
 Fuels Derived from Wastewater 1819
 Energy Recovery from Gaseous Fuels with Engines
 and Turbines 1821

- Energy Recovery from Gaseous Fuels with Boilers 1824 Energy Recovery from Solid Fuels 1826 Energy Recovery from Syngas 1833 Energy Recovery with Fuel Cell 1833
- 7-7 Recovery and Utilization of Thermal
 Energy 1834
 Sources of Heat 1835
 Demands for Heat 1836
 Devices for Waste Heat Recovery and
 Utilization 1838
 Design Considerations for Thermal Energy
 Recovery Systems 1843
- 17-8 Recovery and Utilization of Hydraulic Potential
 Energy 1846
 Type of Hydraulic Potential Energy Recovery
 Devices 1846
 Application of Hydraulic Energy Recovery
 Devices 1847
 Use of Residual Pressure Head in Treatment
 Processes 1849
- 17-9 Energy Management 1850
 Process Optimization and Modification
 for Energy Saving 1850
 Process Modification for Increased Energy
 Production 1856
 Peak Flowrate Management (Peak Energy
 Usage) 1857
 Selection of Energy Sources 1858
- Treatment Processes 1858

 Enhanced Energy Recovery of Particulate Organic

 Matter 1858

 Reduced Energy Usage in Biological

 Treatment 1859

 Reduced Energy Usage through the Use of

 Alternative Treatment Processes 1859

 Prospects for the Future 1860

 Problems and Discussion Topics 1860

18 Wastewater Management: Future Challenges and Opportunities 1865

18-1 Future Challenges and Opportunities 1867

Asset Management 1867

Design for Energy and Resource Recovery 1869

Design of Wastewater Treatment Plants for Potable Reuse 1869 Decentralized (Satellite) Wastewater Treatment 1872 Low Impact Development 1873 Triple Bottom Line 1875

- 18-2 Impact of Population Demographics, Climate
 Change and Sea Level Rise, Uncontrollable Events,
 and Unintended Consequences 1875
 Impact of Population Demographics 1876
 Impact of Climate Change and Sea Level
 Rise 1877
 Impact of Uncontrollable Events 1879
 Impact of the Law of Unintended
 Consequences 1879
- 18-3 Upgrading Treatment Plant Performance Through Process Optimization and/or Operational Changes 1882

 Process Optimization 1882

 Operational Changes to Improve Plant

 Performance 1886
- 18-4 Upgrading Treatment Plant Performance Through Process Modification 1889

 Upgrading Physical Facilities 1889

 Upgrading to Meet New Constituent Removal

 Requirements 1890
- **18-5** Management of Wet-Weather Flows 1890 SSO Policy Issues 1892

SSO Guidance 1895
Wet-Weather Management Options 1895
Discussion Topics 1899

Appendixes

- A Conversion Factors 1901
- **B** Physical Properties of Selected Gases and the Composition of Air 1909
- C Physical Properties of Water 1913
- D Statistical Analysis of Data 1917
- Dissolved Oxygen Concentration in Water as a Function of Temperature, Salinity, and Barometric Pressure 1923
- F Carbonate Equilibrium 1925
- **G** Moody Diagrams for the Analysis of Flow in Pipes 1929
- H Analysis of Nonideal Flow in Reactors using
 Tracers 1931
- Modeling Nonideal Flow in Reactors 1941

Indexes

Name Index 1953 Subject Index 1966