CONTENTS

Preface			X	
1	LAGR	ANGIAN MECHANICS	1	
	1.1	Example and Review of Newton's Mechanics: A Block Sliding on		
		an Inclined Plane	1	
	1.2	Using Virtual Work to Solve the Same Problem	3	
	1.3	Solving for the Motion of a Heavy Bead Sliding on a Rotating Wire	7	
	1.4	Toward a General Formula: Degrees of Freedom and Types		
		of Constraints	10	
	1.5	Generalized Velocities: How to "Cancel the Dots"	14	
	1.6	Virtual Displacements and Virtual Work - Generalized Forces	14	
	1.7	Kinetic Energy as a Function of the Generalized Coordinates		
		and Velocities	16	
	1.8	Conservative Forces: Definition of the Lagrangian L	18	
	1.9	Reference Frames	20	
	1.10	Definition of the Hamiltonian	21	
	1.11	How to Get Rid of Ignorable Coordinates	22	
	1.12	Discussion and Conclusions - What's Next after You Get the EOM?	23	
	1.13	An Example of a Solved Problem	24	
		Summary of Chapter 1	25	
		Problems	26	
		Appendix A. About Nonholonomic Constraints	36	
		Appendix B. More about Conservative Forces	41	
2	VARIATIONAL CALCULUS AND ITS APPLICATION TO MECHANICS			
	2.1	History	44	
	2.2	The Euler Equation	46	
	2.3	Relevance to Mechanics	51	
	2.4	Systems with Several Degrees of Freedom	53	
	2.5	Why Use the Variational Approach in Mechanics?	54	
	2.6	Lagrange Multipliers	56	

	2.7	Solving Problems with Explicit Holonomic Constraints	57
	2.8	Nonintegrable Nonholonomic Constraints - A Method that Works	62
	2.9	Postscript on the Euler Equation with More Than	
		One Independent Variable	65
		Summary of Chapter 2	65
		Problems	66
		Appendix. About Maupertuis and What Came to Be Called	
		"Maupertuis' Principle"	75
3	LINE	AR OSCILLATORS	81
	3.1	Stable or Unstable Equilibrium?	82
	3.2	Simple Harmonic Oscillator	87
	3.3	Damped Simple Harmonic Oscillator (DSHO)	90
	3.4	An Oscillator Driven by an External Force	94
	3.5	Driving Force Is a Step Function	96
	3.6	Finding the Green's Function for the SHO	99
	3.7	Adding up the Delta Functions – Solving the Arbitary Force	103
	3.8	Driving an Oscillator in Resonance	105
	3.9	Relative Phase of the DSHO Oscillator with Sinusoidal Drive	110
		Summary of Chapter 3	113
		Problems	114
4		DIMENSIONAL SYSTEMS: CENTRAL FORCES AND	
	THE I	KEPLER PROBLEM	123
	4.1	The Motion of a "Generic" One-Dimensional System	123
	4.2	The Grandfather's Clock	125
	4.3	The History of the Kepler Problem	130
	4.4	Solving the Central Force Problem	133
	4.5	The Special Case of Gravitational Attraction	141
	4.6	Interpretation of Orbits	143
	4.7	Repulsive $\frac{1}{r^2}$ Forces	151
		Summary of Chapter 4	156
		Problems	156
		Appendix. Tables of Astrophysical Data	167
5		THER'S THEOREM AND HAMILTONIAN DYNAMICS	170
	5.1	Discovering Angular Momentum Conservation from	
		Rotational Invariance	170
	5.2	Noether's Theorem	172
	5.3	Hamiltonian Dynamics	175
	5.4	The Legendre Transformation	175
	5.5	Hamilton's Equations of Motion	180
	5.6	Liouville's Theorem	184
	5.7	Momentum Space	129

CONTE	NTS		VII
	5.8	Hamiltonian Dynamics in Accelerated Systems	190
		Summary of Chapter 5	195
		Problems	196
		Appendix A. A General Proof of Liouville's Theorem	
		Using the Jacobian	202
		Appendix B. Poincaré Recurrence Theorem	204
6		RETICAL MECHANICS: FROM CANONICAL	
		ISFORMATIONS TO ACTION-ANGLE VARIABLES	207
	6.1	Canonical Transformations	208
	6.2	Discovering Three New Forms of the Generating Function	213
	6.3	Poisson Brackets	217
	6.4	Hamilton-Jacobi Equation	218
	6.5	Action-Angle Variables for 1-D Systems	230
	6.6	Integrable Systems	235
	6.7	Invariant Tori and Winding Numbers	237
		Summary of Chapter 6	239
		Problems	240
		Appendix. What Does "Symplectic" Mean?	248
7	ROTA	ITING COORDINATE SYSTEMS	252
	7.1	What Is a Vector?	253
	7.2	Review: Infinitesimal Rotations and Angular Velocity	254
	7.3	Finite Three-Dimensional Rotations	259
	7.4	Rotated Reference Frames	259
	7.5	Rotating Reference Frames	263
	7.6	The Instantaneous Angular Velocity $\vec{\omega}$	264
	7.7	Fictitious Forces	267
	7.8	The Tower of Pisa Problem	267
	7.9	Why Do Hurricane Winds Rotate?	271
	7.10	Foucault Pendulum	272
		Summary of Chapter 7	275
		Problems	276
8	THE	DYNAMICS OF RIGID BODIES	283
	8.1	Kinetic Energy of a Rigid Body	284
	8.2	The Moment of Inertia Tensor	286
	8.3	Angular Momentum of a Rigid Body	291
	8.4	The Euler Equations for Force-Free Rigid Body Motion	292
	8.5	Motion of a Torque-Free Symmetric Top	293
	8.6	Force-Free Precession of the Earth: The "Chandler Wobble"	299
	8.7	Definition of Euler Angles	300
	8.8	Finding the Angular Velocity	304
	8.9	Motion of Torque-Free Asymmetric Tops: Poinsot Construction	305

VIII			
viii			

CONTENTS

	8.10	The Heavy Symmetric Top	313	
	8.11	Precession of the Equinoxes	317	
	8.12	Mach's Principle	323	
		Summary of Chapter 8	325	
		Problems	326	
		Appendix A. What Is a Tensor?	333	
		Appendix B. Symmetric Matrices Can Always Be Diagonalized		
		by "Rotating the Coordinates"	336	
		Appendix C. Understanding the Earth's Equatorial Bulge	339	
9	THE T	HEORY OF SMALL VIBRATIONS	343	
	9.1	Two Coupled Pendulums	344	
	9.2	Exact Lagrangian for the Double Pendulum	348	
	9.3	Single Frequency Solutions to Equations of Motion	352	
	9.4	Superimposing Different Modes; Complex Mode Amplitudes	355	
	9.5	Linear Triatomic Molecule	360	
	9.6	Why the Method Always Works	363	
	9.7	N Point Masses Connected by a String	367	
		Summary of Chapter 9	371	
		Problems	373	
		Appendix. What Is a Cofactor?	380	
10	APPROXIMATE SOLUTIONS TO NONANALYTIC PROBLEMS			
	10.1	Stability of Mechanical Systems	384	
	10.2	Parametric Resonance	388	
	10.3	Lindstedt-Poincaré Perturbation Theory	398	
	10.4	Driven Anharmonic Oscillator	401	
		Summary of Chapter 10	411	
		Problems	413	
11	CHAC	OTIC DYNAMICS	423	
	11.1	Conservative Chaos - The Double Pendulum: A Hamiltonian		
		System with Two Degrees of Freedom	426	
	11.2	The Poincaré Section	428	
	11.3	KAM Tori: The Importance of Winding Number	433	
	11.4	Irrational Winding Numbers	436	
	11.5	Poincaré-Birkhoff Theorem	439	
	11.6	Linearizing Near a Fixed Point: The Tangent Map and		
		the Stability Matrix	442	
	11.7	Following Unstable Manifolds: Homoclinic Tangles	446	
	11.8	Lyapunov Exponents	449	
	11.9	Global Chaos for the Double Pendulum	451	
	11.10	Effect of Dissipation	452	
		Damped Driven Pendulum	453	

CONTENTS	ix
MAIPIAIA	• • • • • • • • • • • • • • • • • • • •

44.40		460
	Fractals	463
11.13	Chaos in the Solar System	468
	Student Projects	474
	Appendix. The Logistic Map: Period-Doubling Route	40.1
	to Chaos; Renormalization	481
12 SPECI	AL RELATIVITY	493
12.1	Space-Time Diagrams	495
12.2	The Lorentz Transformation	498
12.3	Simultaneity Is Relative	501
12.4	What Happens to y and z if We Move Parallel to the X Axis?	503
12.5	Velocity Transformation Rules	504
12.6	Observing Light Waves	505
12.7	What Is Mass?	512
12.8	Rest Mass Is a Form of Energy	513
12.9	How Does Momentum Transform?	517
12.10	More Theoretical "Evidence" for the Equivalence of Mass	
	and Energy	519
12.11	Mathematics of Relativity: Invariants and Four-Vectors	521
12.12	A Second Look at the Energy-Momentum Four-Vector	526
12.13	Why Are There Both Upper and Lower Greek Indices?	529
12.14	Relativistic Lagrangian Mechanics	530
12.15	What Is the Lagrangian in an Electromagnetic Field?	533
12.16	Does a Constant Force Cause Constant Acceleration?	535
12.17	Derivation of the Lorentz Force from the Lagrangian	537
12.18	Relativistic Circular Motion	539
	Summary of Chapter 12	540
	Problems	541
	Appendix. The Twin Paradox	554
Bibliography		559
References		563
Index		565