	Editor's foreword				page xvii	
	Pre	face			xix	
Part I	Pri					
	1	Plausi	ible reasor	ning	3	
		1.1	Deducti	ive and plausible reasoning	3	
		1.2	Analog	ies with physical theories	6	
		1.3	The thir	nking computer	7	
		1.4	Introdu	Introducing the robot		
		1.5	Boolear	algebra	9	
		te sets of operations	12			
		1.7	The bas	sic desiderata	17	
		1.8	Comme	ents	19	
			1.8.1	Common language vs. formal logic	21	
			1.8.2	Nitpicking	23	
	2	The q	uantitative	e rules	24	
		2.1	The pro	duct rule	24	
		2.2	The sun	n rule	30	
		2.3	Qualitat	tive properties	35	
		2.4	Numeri	cal values	37	
		2.5	Notatio	n and finite-sets policy	43	
		2.6	Comme	ents	44	
			2.6.1	'Subjective' vs. 'objective'	44	
			2.6.2	Gödel's theorem	45	
			2.6.3	Venn diagrams	47	
			2.6.4	The 'Kolmogorov axioms'	49	
	3	Eleme	entary sam	pling theory	51	
		3.1	Samplin	ng without replacement	52	
		3.2	Logic v	s. propensity	60	
		3.3	Reasoni	ing from less precise information	64	
		3.4	Expecta	ations	66	
		3.5	Other fo	orms and extensions	68	

	3.6 Probability as a mathematical tool						
	3.7						
	3.8	Sampling with replacement	72				
		3.8.1 Digression: a sermon on reality vs. models	73				
	3.9	Correction for correlations	75				
	3.10	Simplification	81				
	3.11	Comments	82				
		3.11.1 A look ahead	84				
4	Eleme	ntary hypothesis testing	86				
	4.1	4.1 Prior probabilities					
	4.2	Testing binary hypotheses with binary data 90					
	4.3	Nonextensibility beyond the binary case	97				
	4.4						
		4.4.1 Digression on another derivation	101				
	4.5	Continuous probability distribution functions	107				
	4.6	Testing an infinite number of hypotheses	109				
		4.6.1 Historical digression	112				
	4.7	Simple and compound (or composite) hypotheses	115				
	4.8	Comments	116				
		4.8.1 Etymology	116				
		4.8.2 What have we accomplished?	117				
5	Queer	uses for probability theory	119				
	5.1	Extrasensory perception	119				
	5.2	Mrs Stewart's telepathic powers	120				
		5.2.1 Digression on the normal approximation	122				
		5.2.2 Back to Mrs Stewart	122				
	5.3	Converging and diverging views					
	5.4	Visual perception – evolution into Bayesianity?					
	5.5	The discovery of Neptune	133				
		5.5.1 Digression on alternative hypotheses	135				
		5.5.2 Back to Newton	137				
	5.6	Horse racing and weather forecasting	140				
		5.6.1 Discussion	142				
	5.7	Paradoxes of intuition	143				
	5.8	Bayesian jurisprudence					
	5.9	Comments	146				
		5.9.1 What is queer?	148 149				
6	Elementary parameter estimation						
	6.1	Inversion of the urn distributions					
	6.2	Both N and R unknown 15					
	6.3	Uniform prior 152 Predictive distributions 154					
	6.4	Predictive distributions					

6.5	Truncated uniform priors	157
6.6	A concave prior	158
6.7	The binomial monkey prior	160
6.8	Metamorphosis into continuous parameter estimation	163
6.9	Estimation with a binomial sampling distribution	163
	6.9.1 Digression on optional stopping	166
6.10	Compound estimation problems	167
6.11	A simple Bayesian estimate: quantitative prior information	168
	6.11.1 From posterior distribution function to estimate	172
6.12	Effects of qualitative prior information	177
6.13	Choice of a prior	178
6.14	On with the calculation!	179
6.15	The Jeffreys prior	181
6.16	The point of it all	183
6.17	Interval estimation	186
6.18	Calculation of variance	186
6.19	Generalization and asymptotic forms	188
6.20	Rectangular sampling distribution	190
6.21	Small samples	192
6.22	Mathematical trickery	193
6.23	Comments	195
The ce	entral, Gaussian or normal distribution	198
7.1	The gravitating phenomenon	199
7.2	The Herschel–Maxwell derivation	200
7.3	The Gauss derivation	202
7.4	Historical importance of Gauss's result	203
7.5	The Landon derivation	205
7.6	Why the ubiquitous use of Gaussian distributions?	207
7.7	Why the ubiquitous success?	210
7.8	What estimator should we use?	211
7.9	Error cancellation	213
7.10	The near irrelevance of sampling frequency distributions	215
7.11	The remarkable efficiency of information transfer	216
7.12	Other sampling distributions	218
7.13	Nuisance parameters as safety devices	219
7.14	More general properties	220
7.15	Convolution of Gaussians	221
7.16	The central limit theorem	222
7.17	Accuracy of computations	224
7.18	Galton's discovery	227
7.19	Population dynamics and Darwinian evolution	229
7.20	Evolution of humming-birds and flowers	231

X

7.2	21 Application to economics	233	9.12 Comparison of psi and chi-squared	300
7.2	The great inequality of Jupiter and Saturn	234	9.13 The chi-squared test	302
7.2		235	9.14 Generalization	304
7.2	24 Hermite polynomial solutions	236	9.15 Halley's mortality table	305
7.2	25 Fourier transform relations	238	9.16 Comments	310
7.2	26 There is hope after all	239	9.16.1 The irrationalists	310
7.2	27 Comments	240	9.16.2 Superstitions	312
	7.27.1 Terminology again	240	10 Physics of 'random experiments'	314
8 Suf	ficiency, ancillarity, and all that	243	10.1 An interesting correlation	314
8.1	Sufficiency	243	10.2 Historical background	315
8.2	2 Fisher sufficiency	245	10.3 How to cheat at coin and die tossing	317
	8.2.1 Examples	246	10.3.1 Experimental evidence	320
	8.2.2 The Blackwell–Rao theorem	247	10.4 Bridge hands	321
8.3	B Generalized sufficiency	248	10.5 General random experiments	324
8.4	Sufficiency plus nuisance parameters	249	10.6 Induction revisited	326
8.5		250	10.7 But what about quantum theory?	327
8.6	6 Ancillarity	253	10.8 Mechanics under the clouds	329
8.7	Generalized ancillary information	254	10.9 More on coins and symmetry	331
8.8		256	10.10 Independence of tosses	335
8.9	Combining evidence from different sources	257	10.11 The arrogance of the uninformed	338
8.1	O Pooling the data	260	Part II Advanced applications	
	8.10.1 Fine-grained propositions	261	11 Discrete prior probabilities: the entropy principle	343
8.1	1 Sam's broken thermometer	262	11.1 A new kind of prior information	343
8.1	2 Comments	264	11.2 Minimum $\sum p_i^2$	345
	8.12.1 The fallacy of sample re-use	264	11.3 Entropy: Shannon's theorem	346
	8.12.2 A folk theorem	266	11.4 The Wallis derivation	351
	8.12.3 Effect of prior information	267	11.5 An example	354
	8.12.4 Clever tricks and gamesmanship	267	11.6 Generalization: a more rigorous proof	355
9 Rep	etitive experiments: probability and frequency	270	11.7 Formal properties of maximum entropy	
9.1	Physical experiments	271	distributions	358
9.2	2 The poorly informed robot	274	11.8 Conceptual problems – frequency correspondence	365
9.3	3 Induction	276	11.9 Comments	370
9.4	Are there general inductive rules?	277	12 Ignorance priors and transformation groups	372
9.5	Multiplicity factors	280	12.1 What are we trying to do?	372
9.6	6 Partition function algorithms	281	12.2 Ignorance priors	374
	9.6.1 Solution by inspection	282	12.3 Continuous distributions	374
9.7	7 Entropy algorithms	285	12.4 Transformation groups	378
9.8	Another way of looking at it	289	12.4.1 Location and scale parameters	378
9.9	Entropy maximization	290	12.4.2 A Poisson rate	382
9.1	10 Probability and frequency	292	12.4.3 Unknown probability for success	382
9.1		293	12.4.4 Bertrand's problem	386
	9.11.1 Implied alternatives	296	12.5 Comments	394

Contents

хi

13	Decisi	on theory, historical background	397		15.9	Discussion	47
	13.1	Inference vs. decision	397			15.9.1 The DSZ Example #5	48
	13.2	Daniel Bernoulli's suggestion	398			15.9.2 Summary	48
	13.3	The rationale of insurance	400		15.10	A useful result after all?	48
	13.4	Entropy and utility	402		15.11	How to mass-produce paradoxes	48
	13.5	The honest weatherman	402	A	15.12		48
	13.6	Reactions to Daniel Bernoulli and Laplace	404	16	Ortho	dox methods: historical background	49
	13.7	Wald's decision theory	406	•	16.1	The early problems	49
	13.8	Parameter estimation for minimum loss	410		16.2	Sociology of orthodox statistics	49
	13.9	Reformulation of the problem	412		16.3	Ronald Fisher, Harold Jeffreys, and Jerzy Neyman	49
	13.10	Effect of varying loss functions	415		16.4	Pre-data and post-data considerations	49
	13.11	General decision theory	417		16.5	The sampling distribution for an estimator	50
	13.12	Comments	418		16.6	Pro-causal and anti-causal bias	50
		13.12.1 'Objectivity' of decision theory	418		16.7	What is real, the probability or the phenomenon?	50
		13.12.2 Loss functions in human society	421		16.8	Comments	50
		13.12.3 A new look at the Jeffreys prior	423			16.8.1 Communication difficulties	50
		13.12.4 Decision theory is not fundamental	423	17	Princi	ples and pathology of orthodox statistics	50
		13.12.5 Another dimension?	424		17.1	Information loss	51
14	Simple	e applications of decision theory	426		17.2	Unbiased estimators	51
	14.1	Definitions and preliminaries	426		17.3	Pathology of an unbiased estimate	51
	14.2	Sufficiency and information	428		17.4	The fundamental inequality of the sampling variance	51
	14.3	Loss functions and criteria of optimum			17.5	Periodicity: the weather in Central Park	52
		performance	430			17.5.1 The folly of pre-filtering data	52
	14.4	A discrete example	432		17.6	A Bayesian analysis	52
	14.5	How would our robot do it?	437		17.7	The folly of randomization	53
	14.6	Historical remarks	438		17.8	Fisher: common sense at Rothamsted	53
		14.6.1 The classical matched filter	439			17.8.1 The Bayesian safety device	53
	14.7	The widget problem	440		17.9	Missing data	53
		14.7.1 Solution for Stage 2	443		17.10	Trend and seasonality in time series	53
		14.7.2 Solution for Stage 3	445			17.10.1 Orthodox methods	53
		14.7.3 Solution for Stage 4	449			17.10.2 The Bayesian method	53
	14.8	Comments	450			17.10.3 Comparison of Bayesian and orthodox	
15	Parado	xes of probability theory	451			estimates	54
	15.1	How do paradoxes survive and grow?	451			17.10.4 An improved orthodox estimate	54
	15.2	Summing a series the easy way	452			17.10.5 The orthodox criterion of performance	54
	15.3	Nonconglomerability	453		17.11		54
	15.4	The tumbling tetrahedra	456		17.12	Comments	55
	15.5	Solution for a finite number of tosses	459	18	The A	p distribution and rule of succession	55
	15.6	Finite vs. countable additivity	464		18.1	Memory storage for old robots	55
	15.7	The Borel–Kolmogorov paradox	467		18.2	Relevance	55
	15.8	The marginalization paradox	470		18.3	A surprising consequence	55
		15.8.1 On to greater disasters	474		10/	Outer and inner robots	55

xiii

	18.5	An application	561				
	18.6	Laplace's rule of succession	563				
	18.7	Jeffreys' objection					
	18.8	Bass or carp?					
	18.9	So where does this leave the rule?					
	18.10	0 Generalization					
	18.11	Confirmation and weight of evidence	571				
		18.11.1 Is indifference based on knowledge or ignorance?	573				
	18.12	Carnap's inductive methods	574				
	18.13	Probability and frequency in exchangeable sequences	576				
	18.14	Prediction of frequencies	576				
	18.15	One-dimensional neutron multiplication	579				
		18.15.1 The frequentist solution	579				
		18.15.2 The Laplace solution	581				
	18.16	The de Finetti theorem	586				
	18.17	Comments	588				
19	Physic	al measurements	589				
	19.1	Reduction of equations of condition	589				
	19.2	Reformulation as a decision problem	592				
		19.2.1 Sermon on Gaussian error distributions	592				
	19.3	The underdetermined case: K is singular	594				
	19.4	The overdetermined case: K can be made nonsingular	595				
	19.5	Numerical evaluation of the result	596				
	19.6	Accuracy of the estimates	597				
	19.7	Comments	599				
		19.7.1 A paradox	599				
20	Model	comparison .	601				
	20.1	Formulation of the problem	602				
	20.2	The fair judge and the cruel realist	603				
		20.2.1 Parameters known in advance	604				
		20.2.2 Parameters unknown	604				
	20.3	But where is the idea of simplicity?	605				
	20.4	An example: linear response models	607				
		20.4.1 Digression: the old sermon still another time	608				
	20.5	Comments	613				
		20.5.1 Final causes	614				
21	Outlier	rs and robustness	615				
	21.1	The experimenter's dilemma	615				
	21.2	Robustness					
	21.3						
	21.4	4 Exchangeable selection					
	21.5	The general Bayesian solution					

21.6	Pure outlie	ers		624	
21.7	One reced	ing datu	m	625	
22 Introduc	ction to co	nmunica	ation theory	627	
22.1	Origins of	the theo	ту	627	
22.2	The noisel	ess chan	nel	628	
22.3	The inform	nation so	ource	634	
22.4	Does the I	English l	anguage have statistical properties?	636	
22.5	Optimum	encoding	g: letter frequencies known	638	
22.6	Better enc	oding fro	om knowledge of digram frequencies	641	
22.7	Relation to	a stoch	astic model	644	
22.8	The noisy	y channel			
Appendix A	Other ap	proache	s to probability theory	651	
	A.1 Th	e Kolmo	ogorov system of probability	651	
	A.2 Th	e de Fin	etti system of probability	655	
	A.3 Co	mparati	ve probability	656	
	A.4 H	oldouts a	gainst universal comparability	658	
	A.5 Sp	eculatio	ns about lattice theories	659	
Appendix B	Mathematical formalities and style			661	
	B.1 No	tation a	nd logical hierarchy	661	
	B.2 Ou	ır 'cautio	ous approach' policy	662	
	B.3 W	illy Felle	er on measure theory	663	
	B.4 Kı	onecker	vs. Weierstrasz	665	
	B.5 W	hat is a l	egitimate mathematical function?	666	
	В.	5.1 De	lta-functions	668	
	В.	5.2 No	ndifferentiable functions	668	
	В.	5.3 Bo	gus nondifferentiable functions	669	
,	B.6 Co	unting i	nfinite sets?	671	
	B.7 Th	e Hausd	orff sphere paradox and mathematical		
		diseas	es	672	
	B.8 W	hat am I	supposed to publish?	674	
	B.9 M	athemati	cal courtesy	675	
Appendix C	Convolutions and cumulants				
	C.1 Re	lation of	f cumulants and moments	679	
	C.2 Ex	amples		680	
References				683	
Bibliography	,			705	
Author index	;			721	
Subject index	r			724	