Contents

Preface Acknowledgments			xvi xvi		
1	Introduction				
	1.1	Historical Perspective	2		
	1.2		4		
	1.3	Origins of the Refractive Index of Glass	6		
	1.4	Overview of Chapters	8		
2	Pho	tosensitivity and Photosensitization of Optical Fibers	15		
	2.1	Photorefractivity and Photosensitivity	16		
		Defects in Glass	18		
		Detection of Defects	20		
	2.4	Photosensitization Techniques	21		
		2.4.1 Germanium-Doped Silica Fibers	22		
		2.4.2 Germanium-Boron Codoped Silicate Fibers	26		
		2.4.3 Tin-Germanium Codoped Fibers	28		
		2.4.4 Cold, High-Pressure Hydrogenation	29		
		2.4.5 Rare-Earth-Doped Fibers	34		
		Densification and Stress in Fibers	34		
	2.6	Summary of Photosensitive Mechanisms in Germanosilicate			
	۰	Fibers	35		
	2.7	Summary of Routes to Photosensitization	37		
	•	2.7.1 Summary of Optically Induced Effects	38		
	2.8	Chemical Composition Gratings	41		
3	Fab	rication of Bragg Gratings	53		
	3.1	Methods for Fiber Bragg Grating Fabrication	53		
		3.1.1 The Bulk Interferometer	53		
		3.1.2 The Phase Mask	55		
		3.1.3 The Phase-Mask Interferometer	59		

		3.1.4 Slanted Grating	65	4.7 Radiation Mode Couplers	152
		3.1.5 The Scanned Phase-Mask Interferometer	66	4.7.1 Counterpropagating Radiation Mode Coupler:	
		3.1.6 The Lloyd Mirror and Prism Interferometer	69 .	The Side-Tap Grating	152
		3.1.7 Higher Spatial Order Masks	72	4.7.2 Copropagating Radiation Mode Coupling:	
		3.1.8 Point-by-Point Writing	74		165
		3.1.9 Gratings for Mode and Polarization Conversion	75	4.8 Grating Simulation	171
		3.1.10 Single-Shot Writing of Gratings	77	4.8.1 Methods for Simulating Gratings	171
		3.1.11 Long-Period Grating Fabrication	78	4.8.2 Transfer Matrix Method	172
		3.1.12 Ultralong-Fiber Gratings	79	4.9 Multilayer Analysis	177
		3.1.13 Tuning of the Bragg Wavelength, Moiré,		4.9.1 Rouard's Method	177
		Fabry-Perot, and Superstructure Gratings	81	4.9.2 The Multiple Thin-Film Stack	178
		3.1.14 Fabrication of Continuously Chirped Gratings	86	4.10 Grating Design	180
		3.1.15 Fabrication of Step-Chirped Gratings	91	4.10.1 Phase-Only Sampling of Gratings	181
		3.1.16 Techniques for Continuous Writing of Fiber Bragg		4.10.2 Simulation of Gratings	182
		Gratings	93		
	3.2	Tunable Phase Masks	101	5 Apodization of Fiber Gratings	189
		3.2.1 Fabrication of Long-Period Gratings	103		103
	3.3	Type II Gratings	104	5.1 Apodization Shading Functions	190
		Type IIA Gratings	104	5.2 Basic Principles and Methodology	193
	3.5	Sources for Holographic Writing of Gratings	104		193
		3.5.1 Low Coherence Sources	105	± • • • • • • • • • • • • • • • • • • •	196
		3.5.2 High Coherence Sources	106	5.2.3 The Variable Diffraction Efficiency Phase Mask	198
				5.2.4 Multiple Printing of In-Fiber Gratings	
ı	The	ory of Fiber Bragg Gratings	119	Applied to Apodization	199
r		· - ·		5.2.5 Position-Weighted Fabrication of Top-Hat	
	4.1	Wave Propagation	120	Reflection Gratings	201
		4.1.1 Waveguides	122	5.2.6 The Moving Fiber/Phase-Mask Technique	203
	4.2	Coupled-Mode Theory	124	5.2.7 The Symmetric Stretch Apodization Method	208
		4.2.1 Spatially Periodic Refractive Index Modulation	126	5.3 Fabrication Requirements for Apodization and Chirp	212
		4.2.2 Phase Matching	129		
		4.2.3 Mode Symmetry and the Overlap Integral	130	6 Fiber Grating Band-Pass Filters	217
		4.2.4 Spatially Periodic Nonsinusoidal Refractive Index			
		Modulation	132	6.1 Distributed Feedback, Fabry-Perot, Superstructure,	
		4.2.5 Types of Mode Coupling •	132	<u> </u>	218
		Coupling of Counterpropagating Guided Modes	139		219
		Codirectional Coupling	142	•	227
		Polarization Couplers: Rocking Filters	145		229
	4.6	Properties of Uniform Bragg Gratings	148		233
		4.6.1 Phase and Group Delay of Uniform	1.51	6.3.1 The Asymmetric Michelson Multiple-Band-Pass	
		Period Gratings	151	Filter	240

xi

6.4	The Mach-Zehnder Interferometer Band-Pass Filter	245	8.3 The Fiber Bragg Grating Rare-Earth-Doped Fiber Laser	36
	6.4.1 Optical Add-Drop Multiplexers Based on the		8.4 Erbium-Doped Fiber Lasers	36
	GMZI-BPF	248	8.4.1 Single-Frequency Erbium-Doped Fiber Lasers	36
6.5	The Optical Circulator-Based OADM	250	8.5 The Distributed Feedback Fiber Laser	36
	6.5.1 Reconfigurable OADM	254	8.5.1 Multifrequency Sources	36
6.6	The Polarizing Beam Splitter Band-Pass Filter	255	8.5.2 Tunable Single-Frequency Sources	36
	In-Coupler Bragg Grating Filters	259	8.6 Bragg Grating-Based Pulsed Sources	36
	6.7.1 Bragg Reflecting Coupler OADM	260	8.7 Fiber Grating Resonant Raman Amplifiers	37
	6.7.2 Grating-Frustrated Coupler	266	8.8 Gain-Flattening and Clamping in Fiber Amplifiers	37
6.8	Side-Tap and Long-Period Grating Band-Pass Filters	270	8.8.1 Amplifier Gain Equalization with Fiber Gratings	37
6.9		274	8.8.2 Optical Gain Control by Gain Clamping	37
6.10	Mode Converters	278	8.8.3 Analysis of Gain-Controlled Amplifiers	38
	6.10.1 Guided-Mode Intermodal Couplers	278	8.8.4 Cavity Stability	38
6.11	Sagnac Loop Interferometer	280	8.8.5 Noise Figure	38
	Gires-Tournois Filters	282	8.9 High-Powered Lasers and Amplifiers	38
	Tunable Band-Pass Filters	285	8.9.1 Coupling of Laser Diodes to Optical Fiber	
6.14	LPG Filters	287	with FBGs	38
			8.9.2 Hybrid Lasers: Dynamic Gratings	38
Chi	rped Fiber Bragg Gratings	301	8.9.3 Fiber Lasers with Saturable Absorbers in the Cavity	38
			8.10 Toward Higher-Power Fiber Lasers and Amplifiers	38
	General Characteristics of Chirped Gratings	301	8.10.1 Fiber Raman Lasers	39
7.2	Chirped and Step-Chirped Gratings	306	8.11 Ultrahigh-Power Lasers and Amplifiers	39
	7.2.1 Effect of Apodization	312		
	7.2.2 Effect of Nonuniform Refractive Index Modulation		9 Measurement and Characterization of Gratings	40
	on Grating Period	317		40
7.3	Super-Step-Chirped Gratings	319	9.1 Measurement of Reflection and Transmission Spectra	
7.4	Polarization Mode Dispersion in Chirped Gratings	322	of Bragg Gratings	40
7.5		325	9.2 Perfect Bragg Gratings	41
	7.5.1 Systems Simulations and Chirped Grating		9.3 Phase and Temporal Response of Bragg Gratings	41
	Performance	327	9.3.1 Measurement of the Grating Profile	42
7.6	Other Applications of Chirped Gratings	330	9.3.2 Measurement of Internal Stress	42
	7.6.1 Pulse Shaping with Uniform Gratings	331	9.4 Strength, Annealing, and Lifetime of Gratings	43
	7.6.2 Optical Delay Lines	334	9.4.1 Mechanical Strength	43
	7.6.3 Pulse Shaping with Chirped Gratings	336	9.4.2 Bragg Grating Lifetime and Thermal Annealing	43
	7.6.4 Pulse Multiplication	336	9.4.3 Accelerated Aging of Gratings	43
	7.6.5 Beam Forming	337		
			10 Principles of Optical Fiber Grating Sensors	44
Fibe	er Grating Lasers and Amplifiers	347	10.1 Sancing with Eilen Busas Castings	4.4
0 1	Eihar Crating Camicanductor I assess The ECCI	347	10.1 Sensing with Fiber Bragg Gratings	44
	Fiber Grating Semiconductor Lasers: The FGSL Static and Dynamic Properties of FGLs	3 4 / 353	10.1.1 Principles of Sensing	44
0.2		353 357	10.1.2 Fiber Designs for Sensing	44
	8.2.1 Modeling of External Cavity Lasers			
	8.2.2 General Comments on FGLs	359		

Contents

Contents

11

		11.1.2	5	
			with Femtosecond Lasers	512
		11.1.3	Femtosecond Laser Writing with a Phase Mask	513
		11.1.4		
		1116	Fiber Bragg Gratings	517
	11.0	11.1.5	5	521
	11.2	Conclu	ision .	522
12	Poli	ng of Gl	asses and Optical Fibers	527
	12.1	Optical	l Poling	527
		12.1.1	A Grating for Quasi-Phase Matching	529
		12.1.2	Recording a Grating for SHG	530
	12.2	UV Po	ling	531
	12,3	Therma	al Poling of Glass	532
		12.3.1	Glass Electrets	532
		12.3.2	Creating a Second-Order Nonlinearity	534
		12.3.3	Other Poling Techniques	535
	12.4	Charac	eterization Techniques	536
		12.4.1	Measurement of the Nonlinear Optical Coefficient	536
		12.4.2	Etching	540
		12.4.3	Elemental Analysis of the Surface and Other	
			Techniques	542
	12.5		mental and Practical Issues	544
		12.5.1	,	544
		12.5.2	Defects and Water	546
		12.5.3	•	547
		12.5.4	Electrodes	549
		12.5.5	Spatial Resolution	550
	12.6		ling Process in Detail	550
		12.6.1		551
		12.6.2	Poling for Long Time Intervals	553
		12.6.3	Models	555
		12.6.4	Erasure and Stability	557
	12.7	Routes	for Increasing the Second-Order Optical	
		Nonlin	earity	560
		12.7.1	Poling Methods (Optimization and Novel	
			Techniques)	561
		12.7.2	Increasing E-Field Breakdown	561
		12.7.3	Increase $\chi(3)$ through Poling	561
		12.7.4	Increasing $\chi(3)$ through Resonance and Doping	562
		12.7.5	Glasses Other Than Silica	562

	10.1.3	Point Temperature Sensing with Fiber Bragg	
		Gratings	450
	10.1.4	Distributed Sensing with Fiber Bragg Gratings	452
	10.1.5	Fourier Transform Spectroscopy of Fiber Bragg	
	•	Grating Sensors	453
	10.1.6	Fiber Bragg Grating Fiber Laser Sensors	456
	10.1.7	Measurement of Temperature with Fiber Bragg	
		Gratings	459
	10.1.8	Strain Measurements with Fiber Bragg Gratings	461
	10.1.9	Fiber Bragg Grating Wavelength Temperature	
		Compensation Techniques	462
	10.1.10	Pressure and Loading	467
	10.1.11	Chirped Grating Sensors	471
	10.1.12	Acceleration	473
	10.1.13		475
	10.1.14	Magnetic Field Sensing with Fiber Bragg	
		Gratings	476
10.2	Evanes	cent-Field Refractive Index Sensors	477
	10.2.1	Fiber Bragg Grating-Based Refractive	
		Index Sensors	477
	10.2.2	Long-Period Gratings-Based Refractive	
		Index Sensors	478
	10.2.3		479
	10.2.4	Guided Wave Surface Plasmon-Polariton Sensors	480
	10.2.5	Theory of the Surface Plasmon-Polariton	481
	10.2.6	Optimization of Surface Plasmon-Polariton Sensors	483
10.3		eriod Grating (LPG) Sensors	489
10.4		tions of FBG Sensors	493
	10.4.1	Biomedical Sensing: Hydrostatic Pressure Sensing	
		in Medicine	493
	10.4.2		494
	10.4.3	· · ·	494
	10.4.4		495
	10.4.5	Tilt Sensors	495
10.5	Conclu	sions and Future Prospects	496
Fem	tosecond	-Induced Refractive Index Changes in Glass	503
11.1	Light P	ropagation in Glass	503
		Theoretical Background	505
		•	

Appendix I Index		597 601
12.10	Conclusions	581
	12.9.3 Applications of Electro-Optic Fibers	573
	12.9.2 Quasi-Phase Matching	572
	12.9.1 Physics and Characterization	571
12.9	Poled Fibers	. 570
	12.8.4 Bleaching	569
	12.8.3 Quasi-Phase Matching	569
	12.8.2 Physics and Characterization	568
	12.8.1 Materials and Systems	568
12.8	Poled Films and Waveguides	568