CONTENTS

1	Intr	oducti	on	1	
	1.1	Atomi	c nuclei and microwave cavities	2	
	1.2	Wave	localization and fluctuations	4	
	1.3	Mesos	copic conductors: time- and length-scales	5	
			Ballistic mesoscopic cavities	$\overline{7}$	
			Diffusive mesoscopic conductors	7	
				8	
	1.4		ization of the book	12	
2	Introduction to the quantum mechanical time-independent				
	scat	tering	theory I: one-dimensional scattering	15	
	2.1	Poten	tial scattering in infinite one-dimensional space	16	
		2.1.1	The Lippmann–Schwinger equation; the free Green		
			function; the reflection and the transmission		
			amplitudes	16	
		2.1.2	The T matrix	23	
		2.1.3	The full Green function	25	
		2.1.4	The S matrix	30	
		2.1.5	The transfer or M matrix	44	
		2.1.6	Combining the S matrices for two scatterers in series	48	
		2.1.7	Transformation of the scattering and the transfer		
			matrices under a translation	51	
		2.1.8	An exactly soluble example	53	
		2.1.9		57	
		2.1.10	Combination of reflection and transmission		
			amplitudes for a one-dimensional disordered		
			conductor: invariant imbedding equations	68	
	2.2	Poten	tial scattering in semi-infinite one-dimensional space:		
			ance theory	70	
		2.2.1	A soluble model for the study of resonances	71	
		2.2.2	Behavior of the phase shift	73	
		2.2.3	Behavior of the wave function	78	
		2.2.4	Analytical study of the internal amplitude of the		
			wave function near resonance	84	
		2.2.5	The analytic structure of $S(k)$ in the complex-momentum		
			plane	87	
		2.2.6	Analytic structure of $S(E)$ in the complex-energy		
			plane	90	

CONTENTS	
001111110	

		2.2.7	The <i>R</i> -matrix theory of scattering	93			
		2.2.8		109			
3	Introduction to the quantum mechanical time-independent						
		scattering theory II: scattering inside waveguides and					
		ities		120			
	3.1		i-one-dimensional scattering theory	120			
		3.1.1	The reflection and transmission amplitudes; the				
			Lippmann–Schwinger coupled equations	120			
		3.1.2	The S matrix	138			
		3.1.3	The transfer matrix	141			
		3.1.4	Combining the S matrices for two scatterers in series	145			
		3.1.5	Transformation of the scattering and transfer				
			matrices under a translation	146			
		3.1.6	Exactly soluble example for the two-channel problem	147			
		3.1.7					
			and closed channels	155			
	3.2	Scatte	ering by a cavity with an arbitrary number of				
			guides	168			
		3.2.1		168			
		3.2.2	The S matrix; the reflection and transmission				
			amplitudes	171			
	3.3	The l	<i>R</i> -matrix theory of two-dimensional scattering	181			
4	Lin	ear res	sponse theory of quantum electronic transport	187			
	4.1		system in equilibrium	188			
	4.2		cation of an external electromagnetic field	191			
	4.3	The e	external field in the scalar potential gauge	193			
		4.3.1	The charge density and the potential profile	194			
		4.3.2	The current density	208			
	4.4	The ϵ	external field in the vector potential gauge	209			
	4.5	Evalu	nation of the conductance	221			
5	The maximum-entropy approach: an information-theoretic						
	viev	wpoint	t	226			
	5.1	Prob	ability and information entropy: the role of the				
		releva	ant physical parameters as constraints	227			
		5.1.1	Properties of the entropy	229			
		5.1.2		233			
	5.2	The r	cole of symmetries in motivating a natural probability				
		meas		234			
	5.3	Appli	ications to equilibrium statistical mechanics	235			
		5.3.1	The classical microcanonical ensemble	236			
		5.3.2	The classical canonical ensemble	236			

CONTENTS

t

i.

		5.3.3	The quantum mechanical canonical ensemble	239		
	5.4	The n	naximum-entropy criterion in the context of statistical			
		infere	nce	241		
6	Electronic transport through open chaotic cavities			244		
	6.1	Statis	tical ensembles of S matrices: the invariant measure	245		
	6.2	The o	ne-channel case	249		
	6.3	6.3 The multichannel case		251		
	6.4	Absence of prompt (direct) processes		253		
		6.4.1	Averages of products of S : weak localization and			
			conductance fluctuations	253		
		6.4.2	The distribution of the conductance in the			
			two-equal-lead case	258		
	6.5	Prese	nce of prompt (direct) processes	262		
		6.5.1	The case $\beta = 2$	262		
		6.5.2	The case $\beta = 1$	264		
	6.6	Nume	erical calculations and comparison with theory	264		
		6.6.1	Absence of prompt (direct) processes	265		
		6.6.2	Presence of prompt (direct) processes	268		
	6.7	Deph	asing effects: comparison with experimental data	270		
		6.7.1	The limit of large N_{ϕ}	272		
		6.7.2	Arbitrary N_{ϕ}	274		
		6.7.3	Physical experiments	276		
7	Electronic transport through quasi-one-dimensional					
	\mathbf{disc}	ordere	d systems	279		
	7.1	nble of transfer matrices; the invariant measure; the				
		comb	ination law and the Smoluchowski equation	280		
		7.1.1	The invariant measure	284		
		7.1.2	The ensemble of transfer matrices	285		
	7.2 The Fokker–Planck equation for a disordered one-dimension		Okker–Planck equation for a disordered one-dimensional			
		conductor		288		
		7.2.1	The maximum-entropy ansatz for the building block	288		
		7.2.2	Constructing the probability density for a system of			
			finite length	290		
	7.3	The H	Fokker Planck equation for a quasi-one-dimensional			
		multi	channel disordered conductor	297		
		7.3.1		298		
		7.3.2	Constructing the probability density for a system of			
			finite length	301		
		7.3.3	The diffusion equation for the orthogonal			
			universality class, $\beta = 1$	302		
		7.3.4	The diffusion equation for the unitary universality			
			class, $\beta = 2$	310		

 $\mathbf{x}\mathbf{i}$

CONTENTS

	7.4	A unified form of the diffusion equation for the various universality classes describing quasi-one-dimensional	
		disordered conductors: calculation of expectation values	317
		7.4.1 The moments of the conductance	318
	7.5	The correlations in the electronic transmission and	
	1.0	reflection from disordered quasi-one-dimensional	
		conductors	324
8	An	introduction to localization theory	329
	8.1	Strong localization	330
	8.2	Mobility edge	334
	8.3	Coherent back-scattering (CBS)	336
	8.4	Scaling theory	339
	8.5	Weak localization: quantum correction to the conductivity	341
		8.5.1 The Hamiltonian and the Green function	342
		8.5.2 Ensemble-averaged Green's function in the self-consistent	t
		Born approximation	348
	8.6	Electrical conductivity of a disordered metal and quantum	
		corrections: weak localization	349
		8.6.1 Classical (Drude) conductivity	353
		8.6.2 Weak localization (WL) and quantum correction to	
		the classical (Drude) conductivity: the	
		maximally-crossed diagrams	356
		8.6.3 Scale dependence of the conductivity	359
A	The	e theorem of Kane-Serota-Lee	361
в	The	e conductivity tensor in RPA	366
С	The	e conductance in terms of the transmission coefficient	
	of t	the sample	375
D	Eva	aluation of the invariant measure	379
	D.1	The orthogonal case, $\beta = 1$	381
	D.2	The unitary case, $\beta = 2$	384
Re	fere	nces	387
Ine	Index		