Contents

	Preface		page xv
		ote on choice of metric	xviii
		website	XX
Pa	rt 1	Effective field theory: the Standard Model,	
		supersymmetry, unification	1
1	Befo	ore the Standard Model	3
		Suggested reading	7
2	The	Standard Model	9
	2.1	Yang–Mills theory	9
	2.2	Realizations of symmetry in quantum field theory	12
	2.3	The quantization of Yang-Mills theories	18
	2.4	The particles and fields of the Standard Model	22
	2.5	The gauge boson masses	25
	2.6	Quark and lepton masses	27
		Suggested reading	28
		Exercises	28
3	Phe	nomenology of the Standard Model	29
	3.1	The weak interactions	29
	3.2	The quark and lepton mass matrices	32
	3.3	The strong interactions	34
	3.4	The renormalization group	35
	3.5	Calculating the beta function	39
	3.6	The strong interactions and dimensional	
		transmutation	43
	3.7	Confinement and lattice gauge theory	44
	3.8	Strong interaction processes at high momentum transfer	51
		Suggested reading	59
		Exercises	61

viii Contents

4	The Standard Model as an effective field theory		63
	4.1	Lepton and baryon number violation	66
	4.2	Challenges for the Standard Model	70
	4.3	The hierarchy problem	71
	4.4	Dark matter and dark energy	72
	4.5	Summary: successes and limitations of the	
		Standard Model	73
		Suggested reading	73
5	Anoi	malies, instantons and the strong CP problem	75
	5.1	The chiral anomaly	76
	5.2	A two-dimensional detour	81
	5.3	Real QCD	89
	5.4	The strong CP problem	100
	5.5	Possible solutions of the strong CP problem	102
		Suggested reading	105
		Exercises	106
6	Grand unification		107
	6.1	Cancellation of anomalies	110
	6.2	Renormalization of couplings	110
	6.3	Breaking to $SU(3) \times SU(2) \times U(1)$	111
	6.4	$SU(2) \times U(1)$ breaking	112
	6.5	Charge quantization and magnetic monopoles	113
	6.6	Proton decay	114
	6.7	Other groups	114
		Suggested reading	117
		Exercises	117
7	Magnetic monopoles and solitons		119
	7.1	Solitons in $1 + 1$ dimensions	120
	7.2	Solitons in $2 + 1$ dimensions: strings or vortices	122
	7.3	Magnetic monopoles	122
	7.4	The BPS limit	124
	7.5	Collective coordinates for the monopole solution	125
	7.6	The Witten effect: the electric charge in the	
		presence of θ	127
	7.7	Electric-magnetic duality	128
		Suggested reading	129
		Exercises	129
8	Technicolor: a first attempt to explain hierarchies		131
	8.1	QCD in a world without Higgs fields	132
	8.2	Fermion masses: extended technicolor	133

Contents	ix
omenis	17

8.3	Precision electroweak measurements	135
	Suggested reading	136
	Exercises	136
Part 2	Supersymmetry	137
9 Super	rsymmetry	139
9.1	The supersymmetry algebra and its representations	140
9.2	Superspace	140
9.3	N = 1 Lagrangians	144
9.4	The supersymmetry currents	147
9.5	The ground-state energy in globally supersymmetric	
	theories	148
9.6	Some simple models	149
9.7	Non-renormalization theorems	151
9.8	Local supersymmetry: supergravity	154
	Suggested reading	155
	Exercises	155
10 A firs	st look at supersymmetry breaking	157
10.1	Spontaneous supersymmetry breaking	157
10.2	The goldstino theorem	160
10.3	Loop corrections and the vacuum degeneracy	161
10.4	Explicit, soft supersymmetry breaking	162
10.5	Supersymmetry breaking in supergravity models	163
	Suggested reading	166
	Exercises	166
11 The I	Minimal Supersymmetric Standard Model	167
11.1	Soft supersymmetry breaking in the MSSM	169
11.2	$SU(2) \times U(1)$ breaking	173
11.3	Why is one Higgs mass negative?	175
11.4	Radiative corrections to the Higgs mass limit	176
11.5	Embedding the MSSM in supergravity	177
11.6	The μ term	178
11.7	Constraints on soft breakings	179
	Suggested reading	183
	Exercises	183
12 Supe	rsymmetric grand unification	185
12.1	A supersymmetric grand unified model	185
12.2	Coupling constant unification	186
12.3	Dimension-five operators and proton decay	188
	Suggested reading	189
	Exercises	189

x Contents

13	Super	symmetric dynamics	191
	13.1	Criteria for supersymmetry breaking: the Witten index	192
	13.2	Gaugino condensation in pure gauge theories	193
	13.3	Supersymmetric QCD	194
	13.4	$N_{\rm f} < N$: a non-perturbative superpotential	197
	13.5	The superpotential in the case $N_{\rm f} < N - 1$	200
	13.6	$N_{\rm f} = N - 1$: the instanton-generated superpotential	201
		Suggested reading	208
		Exercises	208
14	Dyna	mical supersymmetry breaking	209
	14.1	Models of dynamical supersymmetry breaking	209
	14.2	Particle physics and dynamical supersymmetry breaking	211
		Suggested reading	218
		Exercises	218
15	Theo	ries with more than four conserved supercharges	219
	15.1	N = 2 theories: exact moduli spaces	219
	15.2	A still simpler theory: $N = 4$ Yang–Mills	221
	15.3	A deeper understanding of the BPS condition	223
	15.4	Seiberg–Witten theory	225
		Suggested reading	230
		Exercises	231
16	More	supersymmetric dynamics	233
	16.1		233
	16.2	More supersymmetric QCD	235
	16.3	$N_{\rm f} = N_{\rm c}$	236
	16.4	$N_{\rm f} > N + 1$	240
	16.5	$N_{\rm f} \geq 3/2N$	241
		Suggested reading	241
		Exercises	242
17	' An ir	ntroduction to general relativity	243
	17.1	Tensors in general relativity	244
	17.2	Curvature	249
	17.3	The gravitational action	250
	17.4	The Schwarzschild solution	252
	17.5	Features of the Schwarzschild metric	254
	17.6	Coupling spinors to gravity	256
		Suggested reading	257
		Exercises	257
18	3 Cosr	nology	259
		Δ history of the universe	263

Contants	xi
Contents	Al

	Suggested reading	268
	Exercises	268
19 Astroi	particle physics and inflation	269
19.1	Inflation	272
19.2	The axion as dark matter	280
19.3	The LSP as the dark matter	283
19.4	The moduli problem	285
19.5	Baryogenesis	287
19.6	Flat directions and baryogenesis	294
19.7	Supersymmetry breaking in the early universe	296
19.8	The fate of the condensate	297
19.9	Dark energy	300
19.9	Suggested reading	301
	Exercises	301
Part 3	String theory	303
20 Introd		305
20.1	The peculiar history of string theory	306
20.1	Suggested reading	311
21 The h	posonic string	313
21.1	The light cone gauge in string theory	315
21.2	Closed strings	318
21.3	String interactions	320
21.4	Conformal invariance	322
21.5	Vertex operators and the S-matrix	328
21.6	The S-matrix vs. the effective action	334
21.7	Loop amplitudes	335
	Suggested reading	338
	Exercises	338
22 The	superstring	341
22.1	Open superstrings	341
22.2	Quantization in the Ramond sector: the appearance of	
	space-time fermions	343
22.3	Type II theory	344
22.4	• •	345
22.5		346
22.6		
	Green–Schwarz formalism	353
22.7		355
	Suggested reading	356
	Exercises	356

xii Contents

23	The h	eterotic string	359
	23.1	The $O(32)$ theory	360
	23.2	The $E_8 \times E_8$ theory	361
		Heterotic string interactions	361
	23.4	A non-supersymmetric heterotic string theory	363
		Suggested reading	363
		Exercises	364
24	Effect	ive actions in ten dimensions	365
	24.1	Coupling constants in string theory	368
		Suggested reading	371
		Exercise	371
25	Comp	actification of string theory I. Tori and orbifolds	373
	25.1	Compactification in field theory: the Kaluza-Klein program	373
	25.2	Closed strings on tori	377
	25.3	Enhanced symmetries	380
	25.4	Strings in background fields	382
	25.5	Bosonic formulation of the heterotic string	386
	25.6	Orbifolds	387
	25.7	Effective actions in four dimensions for orbifold models	395
	25.8	Non-supersymmetric compactifications	398
		Suggested reading	399
		Exercises	400
26	Comp	pactification of string theory II. Calabi–Yau compactifications	401
	26.1	Mathematical preliminaries	401
	26.2	Calabi-Yau spaces: constructions	406
	26.3	The spectrum of Calabi-Yau compactifications	409
	26.4	World sheet description of Calabi-Yau compactification	411
	26.5	An example: the quintic in CP ⁴	414
	26.6	Calabi-Yau compactification of the heterotic	
		string at weak coupling	416
		Suggested reading	426
		Exercises	427
27	Dyna	mics of string theory at weak coupling	429
	27.1	Non-renormalization theorems	430
	27.2	Fayet–Iliopoulos D-terms	434
	27.3	Gaugino condensation	438
	27.4	Obstacles to a weakly coupled string phenomenology	439
		Suggested reading	440
28	Beyo	and weak coupling: non-perturbative string theory	44]
	-	Parturbative dualities	442

	Contents	xiii
28.2	Strings at strong coupling: duality	442
28.3	D-branes	443
28.4	Branes from <i>T</i> -duality of Type I strings	447
28.5	Strong-weak coupling dualities: the equivalence of	
	different string theories	451
28.6	Strong-weak coupling dualities: some evidence	452
28.7	Strongly coupled heterotic string	458
28.8	Non-perturbative formulations of string theory	460
	Suggested reading	465
	Exercises	466
29 Large	and warped extra dimensions	467
29.1	Large extra dimensions: the ADD proposal	467
29.2	Warped spaces: the Randall–Sundrum proposal	470
	Suggested reading	473
	Exercise	473
30 Coda	: where are we headed?	475
	Suggested reading	479
Part 4	The appendices	481
Appendix	x A Two-component spinors	483
Appendix	x B Goldstone's theorem and the pi mesons	487
	Exercises	489
Appendi	x C Some practice with the path integral in field theory	491
C.1	Path integral review	491
C.2	Finite-temperature field theory	492
C.3	QCD at high temperature	495
C.4	Weak interactions at high temperature	496
C.5	Electroweak baryon number violation	497
	Suggested reading	499
	Exercises	499
Appendi	x D The beta function in supersymmetric Yang–Mills theory	501
	Exercise	503
Refe	erences	505
Inde	ex	511