Contents

Preface		xi
Acknowledgements		xii
Fe	atures of the Third Edition	xiii
1	 Introduction 1.1 Introduction and synopsis 1.2 Materials in design 1.3 The evolution of engineering materials 1.4 Case study: the evolution of materials in vacuum cleaners 1.5 Summary and conclusions 1.6 Further reading 	1 2 2 4 6 8 8 8
2	 The design process 2.1 Introduction and synopsis 2.2 The design process 2.3 Types of design 2.4 Design tools and materials data 2.5 Function, material, shape, and process 2.6 Case study: devices to open corked bottles 2.7 Summary and conclusions 2.8 Further reading 	11 12 12 16 17 19 20 24 25
3	 Engineering materials and their properties 3.1 Introduction and synopsis 3.2 The families of engineering materials 3.3 The definitions of material properties 3.4 Summary and conclusions 3.5 Further reading 	27 28 28 30 43 44
4	 Material property charts 4.1 Introduction and synopsis 4.2 Exploring material properties 4.3 The material property charts 4.4 Summary and conclusions 4.5 Further reading 	45 46 46 50 77 78
5	 Materials selection — the basics 5.1 Introduction and synopsis 5.2 The selection strategy 5.3 Attribute limits and material indices 5.4 The selection procedure 	79 80 81 85 93

vi Contents

	5.5	Computer-aided selection	99
	5.6	The structural index	102
	5.7	Summary and conclusions	103
	5.8	Further reading	104
6	Mate	rials selection—case studies	105
	6.1	Introduction and synopsis	106
	6.2	Materials for oars	106
	6.3	Mirrors for large telescopes	110
	6.4	Materials for table legs	114
	6.5	Cost: structural material for buildings	117
	6.6	Materials for flywheels	121
	6.7	Materials for springs	126
	6.8	Elastic hinges and couplings	130
	6.9	Materials for seals	133
	6.10	Deflection-limited design with brittle polymers	136
	6.11	Safe pressure vessels	140
	6.12	Stiff, high damping materials for shaker tables	144
	6.13	Insulation for short-term isothermal containers	147
	6.14	Energy-efficient kiln walls	151
	6.15	Materials for passive solar heating	154
	6.16		157
	6.17	Nylon bearings for ships' rudders	160
	6.18	Materials for heat exchangers	163
	6.19	Materials for radomes	168
	6.20	Summary and conclusions	172
	6.21	Further reading	172
7	7 Processes and process selection		175
	7.1	Introduction and synopsis	176
	7.2	Classifying processes	177
	7.3	The processes: shaping, joining, and finishing	180
	7.4	Systematic process selection	195
	7.5	Ranking: process cost	202
	7.6	Computer-aided process selection	209
	7.7	Supporting information	215
	7.8	Summary and conclusions	215
	7.9	Further reading	216
8	Process selection case studies		219
	8.1	Introduction and synopsis	220
	8.2	Forming a fan	220
	8.3	Fabricating a pressure vessel	223
	8.4	An optical table	227
	8.5	Economical casting	230
	8.6	Computer-based selection: a manifold jacket	232

	8.7 Computer-based selection: a spark-plug insulator	235
	8.8 Summary and conclusions	237
9	Multiple constraints and objectives	239
-	9.1 Introduction and synopsis	240
	9.2 Selection with multiple constraints	241
	9.3 Conflicting objectives, penalty-functions, and exchange constants	245
	9.4 Summary and conclusions	254
	9.5 Further reading	255
	Appendix: Traditional methods of dealing with multiple constraints and objectives	256
10	Case studies—multiple constraints and conflicting objectives	261
	10.1 Introduction and synopsis	262
	10.2 Multiple constraints: con-rods for high-performance engines	262
	10.3 Multiple constraints: windings for high-field magnets	266
	10.4 Conflicting objectives: casings for a mini-disk player	272
	10.5 Conflicting objectives: materials for a disk-brake caliper	276
	10.6 Summary and conclusions	281
11	Selection of material and shape	283
	11.1 Introduction and synopsis	284
	11.2 Shape factors	285
	11.3 Microscopic or micro-structural shape factors	296
	11.4 Limits to shape efficiency	301
	11.5 Exploring and comparing structural sections11.6 Material indices that include shape	305 307
	11.6 Material indices that include shape11.7 Co-selecting material and shape	312
	11.7 Co-selecting material and shape 11.8 Summary and conclusions	312
	11.9 Further reading	316
10		
12	Selection of material and shape: case studies 12.1 Introduction and synopsis	317 318
	12.1 Introduction and synopsis 12.2 Spars for man-powered planes	318
	12.3 Ultra-efficient springs	312
	12.4 Forks for a racing bicycle	326
	12.5 Floor joists: wood, bamboo or steel?	328
	12.6 Increasing the stiffness of steel sheet	331
	12.7 Table legs again: thin or light?	333
	12.8 Shapes that flex: leaf and strand structures	335
	12.9 Summary and conclusions	337
13	Designing hybrid materials	339
	13.1 Introduction and synopsis	340
	13.2 Filling holes in material-property space	342
	13.3 The method: " $A + B + configuration + scale$ "	346
	13.4 Composites: hybrids of type 1	348

Contents **vii**

viii Contents

	 13.5 Sandwich structures: hybrids of type 2 13.6 Lattices: hybrids of type 3 13.7 Segmented structures: hybrids of type 4 13.8 Summary and conclusions 	358 363 371 376
14	13.9 Further reading Hybrid case studies	376 379
	 14.1 Introduction and synopsis 14.2 Designing metal matrix composites 14.3 Refrigerator walls 14.4 Connectors that do not relax their grip 14.5 Extreme combinations of thermal and electrical conduction 14.6 Materials for microwave-transparent enclosures 14.7 Exploiting anisotropy: heat spreading surfaces 14.8 The mechanical efficiency of natural materials 14.9 Further reading: natural materials 	380 380 382 384 386 389 391 393 399
15	Information and knowledge sources for design15.1Introduction and synopsis15.2Information for materials and processes15.3Screening information: structure and sources15.4Supporting information: structure and sources15.5Ways of checking and estimating data15.6Summary and conclusions15.7Further reading	401 402 403 407 409 411 415 416
16	 Materials and the environment 16.1 Introduction and synopsis 16.2 The material life cycle 16.3 Material and energy-consuming systems 16.4 The eco-attributes of materials 16.5 Eco-selection 16.6 Case studies: drink containers and crash barriers 16.7 Summary and conclusions 16.8 Further reading 	417 418 418 419 422 427 433 435 436
17	 Materials and industrial design 17.1 Introduction and synopsis 17.2 The requirements pyramid 17.3 Product character 17.4 Using materials and processes to create product personality 17.5 Summary and conclusions 17.6 Further reading 	439 440 440 442 445 454 455
18	 Forces for change 18.1 Introduction and synopsis 18.2 Market-pull and science-push 18.3 Growing population and wealth, and market saturation 	457 458 458 464

18.5Miniaturization and multi-functionality46618.6Concern for the environment and for the individual46718.7Summary and conclusions46918.8Further reading469Appendix AUseful solutions to standard problems471Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading508B.2Use of material indices507B.1Introduction and synopsis508B.2Use of material indices508C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.3Names and applications: composites, ceramics, glasses, and natural materials516	18.4	Product liability and service provision	465
18.6Concern for the environment and for the individual46718.7Summary and conclusions46918.8Further reading469Appendix AUseful solutions to standard problems471Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts486A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Solutions for diffusion equations500A.16Further reading504A.16Further reading504A.17Names and applications: metals and alloys514C.1Names and applications: composites, ceramics, glasses, and natural materials516C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Meting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ_{γ} and tensil strength, σ_{γ} 522C.7Yield strength, σ_{γ} and tensil strength, σ_{γ} 522C.7Yield strength, σ_{γ} and glass temperature			466
18.7Summary and conclusions46918.8Further reading46918.8Further reading469Appendix AUseful solutions to standard problems471Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels498A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading507B.1Introduction and synopsis508B.2Use of material indices507B.1Introduction and synopsis508B.2Use of material indices507B.3Names and applications: metals and alloys514C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{γ_5} 524C.8Fracture toughness (plane-strain), K_{1C			467
18.8Further reading469Appendix AUseful solutions to standard problems471Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices507B.1Introductions: polymers and foams515C.3Names and applications: polymers and foams515C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{γ_a} and tensile strength, σ_{τ_a} 524C.8Fracture toughness (plane-strain), K_{1C} 526<			469
Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices507B.1Introductions: composites, ceramics, glasses, and natural materials513C.3Names and applications: metals and alloys514C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{γ} , and tensile strength, σ_{rs} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.10Thermal expansion, α <td></td> <td>•</td> <td>469</td>		•	469
Introduction and synopsis473A.1Constitutive equations for mechanical response474A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508B.2Use of material indices508C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_r 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α	Appendix	A Useful solutions to standard problems	
A.1Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 522C.7Yield strength, σ_{y_3} and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532			
A.2Moments of sections476A.3Elastic bending of beams478A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials515C.3Names and applications: metals and alloys514C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 516C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm rs}$ 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.1	Constitutive equations for mechanical response	
A.4Failure of beams and panels480A.5Buckling of columns, plates, and shells482A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508C.1Names and applications: metals and alloys514C.3Names and applications: composites, ceramics, glasses, and natural materials518C.3Names and applications: composites, ceramics, glasses, and natural materials518C.4Melting temperature, T_m , and glass temperature, T_g 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.2		
A.5Buckling of columns, plates, and shells482A.5Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.3	Elastic bending of beams	
A.6Torsion of shafts484A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices507C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.4	Failure of beams and panels	
A.7Static and spinning disks486A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508C.1Names and applications: metals and alloys513C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{y} , and tensile strength, σ_{rs} 524C.7Yield strength, σ_{y} , and tensile strength, σ_{rs} 524C.7Tyled strength, σ_{y} , and tensile strength, σ_{rs} 524C.7Tyled strength, σ_{y} , and tensile strength, σ_{rs} 524C.7Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.5	Buckling of columns, plates, and shells	
A.8Contact stresses488A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices507B.1Introductions: metals and alloys513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{y} , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.6		
A.9Estimates for stress concentrations490A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.7	Static and spinning disks	
A.10Sharp cracks492A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices507B.1Introductions for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.8	Contact stresses	
A.11Pressure vessels494A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.9	Estimates for stress concentrations	
A.11Hissine visits496A.12Vibrating beams, tubes, and disks496A.13Creep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{yy} and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.10	Sharp cracks	492
A.112Circep and creep fracture498A.13Circep and creep fracture498A.14Flow of heat and matter500A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532	A.11	Pressure vessels	
A.13Citcp and tetep metaller500A.14Flow of heat and matter502A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: composites, ceramics, glasses, and natural materials516C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.12	Vibrating beams, tubes, and disks	
A.11Fourther matrix502A.15Solutions for diffusion equations502A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{y} , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.13	Creep and creep fracture	
A.16Further reading504Appendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_{y} , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 528C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.14	Flow of heat and matter	
AritoFurther retainingAppendix BMaterial indices507B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.15	Solutions for diffusion equations	
Appendix DInitiation indices508B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	A.16	Further reading	504
B.1Introduction and synopsis508B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{rs} 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	Appendix	B Material indices	507
B.2Use of material indices508Appendix CData and information for engineering materials513C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			508
C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			508
C.1Names and applications: metals and alloys514C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	Appendix	C Data and information for engineering materials	513
C.2Names and applications: polymers and foams515C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			514
C.3Names and applications: composites, ceramics, glasses, and natural materials516C.4Melting temperature, T_m , and glass temperature, T_g 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			515
natural materials516C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), $K_{1\rm C}$ 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			d
C.4Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$ 518C.5Density, ρ 520C.6Young's modulus, E 522C.7Yield strength, $\sigma_{\rm y}$, and tensile strength, $\sigma_{\rm ts}$ 524C.8Fracture toughness (plane-strain), $K_{1\rm C}$ 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	0.5		516
C.5Density, ρ 520C.6Young's modulus, E522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532	C 4		518
C.6Young's modulus, E 522C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			520
C.7Yield strength, σ_y , and tensile strength, σ_{ts} 524C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			522
C.8Fracture toughness (plane-strain), K_{1C} 526C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO ₂ burden532			524
C.9Thermal conductivity, λ 528C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532			
C.10Thermal expansion, α 530C.11Approximate production energies and CO2 burden532			528
C.11 Approximate production energies and CO_2 burden 532		• •	530
			532
			534

x Contents

Appendix	D Information and knowledge sources for materials and processes	537
D.1	Introduction	538
D.2	Information sources for materials	538
D.3	Information for manufacturing processes	552
D.4	Databases and expert systems in software	553
D.5	Additional useful internet sites	554
D.6	Supplier registers, government organizations, standards and	
	professional societies	555
Appendix	E Exercises	557
E.1	Introduction to the exercises	558
E.2	Devising concepts	559
E.3	Use of material selection charts	559
E.4	Translation: constraints and objectives	562
E.5	Deriving and using material indices	565
E.6	Selecting processes	574
E. 7	Multiple constraints and objectives	579
E.8	Selecting material and shape	587
E.9	Hybrid materials	594
Index		599