Contents

reface

ART ONE GENERAL CONCEPTS					
1	Flow properties and basic principles	3			
	1.1 Forces, stresses, and the continuum hypothesis	3			
	1.2 Measurable properties	4			
	1.3 Flow velocity and velocity fields	5			
	1.4 Analytical description of flows	7			
	1.5 The choice of analytical approach	8			
	1.6 Similarity	11			
	1.7 Patterns of fluid motion	16			
	QUESTIONS AND PROBLEMS	17			
	REFERENCES	18			
2	Measuring systems	19			
	2.1 Measuring systems and their components	19			
	2.2 Static response of measuring systems	23			
	2.3 Dynamic response of measuring systems	31			
	2.4 Distortion, loading, and cross-talk	40			
	QUESTIONS AND PROBLEMS	41			
	REFERENCES	43			
3	Measurement uncertainty	45			
	3.1 Measurement errors	45			
	3.2 Measurement uncertainty	47			
	3.3 Uncertainty of derived properties	48			
	3.4 Rounding of reported values	51			
	QUESTIONS AND PROBLEMS	53			
	REFERENCES	54			
4	Signal conditioning, discretization, and analysis	55			
	4.1 Fundamentals of electric and electronic circuits	55			
	4.2 Analogue signal conditioning	63			

page xi

VIII CONTENTS

	4.3 Discretization of analogue signals	68
	4.4 Statistical analysis of signals	74
	4.5 Frequency analysis of signals	84
	QUESTIONS AND PROBLEMS	94
	REFERENCES	95
5	Background for optical experimentation	98
	5.1 The nature of light	98
	5.2 Light propagation through media	101
	5.3 Illumination	107
	5.4 Light scattering	123
	5.5 Light transmission, sensing, and recording	128
	5.6 Characteristics of seeding particles	132
	QUESTIONS AND PROBLEMS	142
	REFERENCES	144
6	Fluid mechanical apparatus	147
	6.1 Producing the desired flow	147
	6.2 Changing the flow area	148
	6.3 Flow management	151
	6.4 Wind tunnels	154
	6.5 Water tunnels and towing tanks	157
	6.6 Turbulence and shear generation	159
	6.7 Model testing	163
	QUESTIONS AND PROBLEMS REFERENCES	165
	REFERENCES	165
7	Towards a sound experiment	169
	7.1 Planning the experiment	169
	7.2 Safety	170
	7.3 Qualitative assessment	170
	7.4 Record keeping	174
	7.5 Scientific ethics	175
	QUESTIONS AND PROBLEMS REFERENCE	176
	nereneinge	176
PA	RT TWO MEASUREMENT TECHNIQUES	
8	Measurement of flow pressure	179
	8.1 What exactly is pressure?	179
	8.2 Pressure-measuring instrumentation	180
	8.3 Wall-pressure measurement	188
	8.4 In-flow pressure measurement	193
	8.5 Dynamic response and testing of	
	pressure-measuring systems	200
	QUESTIONS AND PROBLEMS	203
	REFERENCES	205

ONTENTS ix

	9.1	Direct methods	208
	9.2	Positive-displacement flow meters	209
	9.3	Venturi, nozzle, and orifice-plate flow meters	211
	9.4	Open-channel flow measurement	212
	9.5	Averaging Pitot tubes	213
	9.6	Laminar flow elements	213
	9.7	Rotameters	214
	9.8	Vortex-shedding flow meters	214
	9.9	Drag flow meters	215
	9.10	Turbine flow meters	215
	9.11	Ultrasonic flow meters	216
	9.12	Electromagnetic flow meters	217
	9.13	Coriolis flow meters	217
	9.14	Thermal-mass flow meters	218
	9.15	Selection of flow meter	219
	QUES	STIONS AND PROBLEMS	219
	REFE	RENCES	220
_			004
0	Flow	visualization techniques	
		Overview	221
		Marker techniques	222
		Optical techniques	231
		Radiation emission techniques	242
		Enhancement of flow visualization records	243
		STIONS AND PROBLEMS	244
	REFE	RENCES	246
1	Mea	surement of local flow velocity	249
	11.1	Thermal anemometry	249
	11.2	Laser Doppler velocimetry	264
	11.3	Ultrasonic Doppler velocimetry	274
	11.4	Particle displacement methods	275
	11.5	Measurement of wind velocity	282
	QUES	STIONS AND PROBLEMS	284
	REFE	RENCES	287
2	Mea	surement of temperature	290
		A practical temperature scale	290
		Thermometers	291
	12.3	Dynamic response of thermometers	296
	12.4	Thermochromic materials	299
	12.5	Radiation emission methods	301
	12.6	Optical techniques	304
	QUES	STIONS AND PROBLEMS	304
	REFE	RENCES	305

13	Measurement of composition	307
	13.1 Sample analysis	307
	13.2 Thermal probes	310
	13.3 Electric conductivity probes	311
	13.4 Light-scattering methods	312
	13.5 Laser-induced fluorescence	316
	13.6 Particulate measurement	318
	13.7 Void measurement	321
	QUESTIONS AND PROBLEMS	323
	REFERENCES	324
14	Measurement of wall shear stress	328
	14.1 Estimates from measured velocity profiles	328
	14.2 Estimates from pressure differences	332
	14.3 Floating-element balances	335
	14.4 Thermal techniques	336
	14.5 Electrochemical method	338
	14.6 Optical techniques	339
	QUESTIONS AND PROBLEMS	342
	REFERENCES	343
15	Outlook	345
Index		