CONTENTS

PREFACE TO THE SECOND EDITION			
PREFACE TO THE FIRST EDITION			
HISTORICAL	INTRODUCTION	1	
	Notes	6	
Chapter 1.	The Statistical Basis of Thermodynamics	9	
	 The macroscopic and the microscopic states Contact between statistics and thermodynamics: physical 	9	
	 1.3. Further contact between statistics and thermodynamics 1.4. The classical ideal gas 	13 15	
	1.5. The entropy of mixing and the Gibbs paradox1.6. The "correct" enumeration of the microstatesProblemsNotes	22 25 26 28	
Chapter 2.	Elements of Ensemble Theory	30	
	 2.1. Phase space of a classical system 2.2. Liouville's theorem and its consequences 2.3. The microcanonical ensemble 2.4. Examples 2.5. Quantum states and the phase space Problems Notes 	30 32 34 36 39 40 41	
Chapter 3.	The Canonical Ensemble	43	
	 3.1. Equilibrium between a system and a heat reservoir 3.2. A system in the canonical ensemble 3.3. Physical significance of the various statistical quantities in the canonical ensemble 	44 45 53	
	 3.4. Alternative expressions for the partition function 3.5. The classical systems 2.6 Energy fluctuations in the canonical ensemble; 	55 56	
	correspondence with the microcanonical ensemble	60	

v

Contents

	 3.7. Two theorems-the "equipa 3.8. A system of harmonic osc 3.9. The statistics of paramagn 3.10. Thermodynamics of magnetic temperatures 	artition" and the "virial" illators etism etic systems: negative	63 66 71 77
	Problems Notes		83 89
Chapter 4.	The Grand Canonical Ensembl	e	90
	4.1. Equilibrium between a sy reservoir	stem and a particle-energy	00
	4.2. A system in the grand can	onical ensemble	92
	4.3. Physical significance of the	various statistical quantities	93
	4.4. Examples	1	96
	4.5. Density and energy fluctuation ensemble: correspondence	ations in the grand canonical with other ensembles	100
	Problems		102
	INOLES		103
Chapter 5.	Formulation of Quantum Statis	tics	104
	5.1. Quantum-mechanical enser matrix	nble theory: the density	104
	5.2. Statistics of the various en	sembles	107
	A. The microcanonical en	nsemble	107
	B. The canonical ensemb	le	109
	C. The grand canonical e	ensemble	110
	5.3. Examples		111
	A. An electron in a magr	netic field	111
	C A linear harmonic osc)X villator	111
	5.4 Systems composed of indis	tinguishable particles	115
	5.5. The density matrix and the	partition function of a system	113
	Problems		119
	Notes		124
Chapter 6.	The Theory of Simple Gases	:	127
	6.1. An ideal gas in a quantum	n-mechanical microcanonical	
	ensemble	1	127
	6.2. An ideal gas in other quant	um-mechanical ensembles	131
	6.4 Vinctic considerations	numbers	134
	6.5 Gaseous systems composed	of molecules with internal	157
	motion	a or molecules with internal	140
	A. Monatomic molecules	1	141
	B. Diatomic molecules	1	142
	C. Polyatomic molecules	1	150
	Problems	1	152
	Notes	1	55

Contents	VII
Ideal Bose Systems	157
 7.1. Thermodynamic behavior of an ideal Bose gas 7.2. Thermodynamics of the black-body radiation 7.3. The field of sound waves 7.4. Inertial density of the sound field 7.5. Elementary excitations in liquid helium II Problems Notes 	158 168 172 179 182 188 193
Ideal Fermi Systems	195
 8.1. Thermodynamic behavior of an ideal Fermi gas 8.2. Magnetic behavior of an ideal Fermi gas A. Pauli paramagnetism B. Landau diamagnetism 8.3. The electron gas in metals A. Thermionic emission (the Richardson effect) B. Photoelectric emission (the Hallwachs effect) 8.4. Statistical equilibrium of white dwarf stars 8.5. Statistical model of the atom Problems Notes 	195 201 202 206 209 213 216 219 223 227 231
	Contents Ideal Bose Systems 7.1. Thermodynamic behavior of an ideal Bose gas 7.2. Thermodynamics of the black-body radiation 7.3. The field of sound waves 7.4. Inertial density of the sound field 7.5. Elementary excitations in liquid helium II Problems Notes Ideal Fermi Systems 8.1. Thermodynamic behavior of an ideal Fermi gas 8.2. Magnetic behavior of an ideal Fermi gas 8.3. The electron gas in metals 8.4. Thermionic emission (the Richardson effect) 8.5. Statistical equilibrium of white dwarf stars 8.5. Statistical model of the atom Problems Notes

vii

Statistical Mechanics of Interacting Systems: The Method Chapter 9. 232 of Cluster Expansions 232 Cluster expansion for a classical gas 9.1. 239 Virial expansion of the equation of state 9.2. 240 Evaluation of the virial coefficients 9.3. 245 General remarks on cluster expansions 9.4. 249 Exact treatment of the second virial coefficient 9.5. Cluster expansion for a quantum-mechanical system 254 9.6. 259 Problems 261 Notes

Statistical Mechanics of Interacting Systems: The Method 262 Chapter 10. of Quantized Fields

	the langestigation	262
10.1.	The formalism of second quantization	270
10.2.	Low-temperature behavior of an imperfect bose gas	273
10.3	Low-lying states of an imperfect Bose gas	273
10.5	Energy spectrum of a Bose liquid	211
10.4.	Energy spectrum of a best require	280
10.5.	States with quantized circulation	
10.6.	Quantized vortex rings and the breakdown of	285
	superfluidity	280
10.7	Low-lying states of an imperfect Fermi gas	209
10.7.	Energy spectrum of a Fermi liquid: Landau's	
10.8.	Energy spectrum of a round require	293
	phenomenological theory	299
Proble	ems	201
Notes		502
TAORCS		

Contents

Chapter 11.	Phase Transitions: Criticality, Universality and Scaling		
	11.1. General remarks on the problem of condensation	306	
	11.2. Condensation of a van der Waals gas	310	
	11.3. A dynamical model of phase transitions	314	
	11.4. The lattice gas and the binary alloy	319	
	11.5. Ising model in the zeroth approximation	321	
	11.6. Ising model in the first approximation	328	
	11.7. The critical exponents	334	
	11.8. Thermodynamic inequalities	338	
	11.9. Landau's phenomenological theory	341	
	11.10. Scaling hypothesis for thermodynamic functions	344	
	11.11. The role of correlations and fluctuations	348	
	11.12. The critical exponents v and η	353	
	11.13. A final look at the mean field theory	356	
	Problems	359	
	Notes	364	

Chapter 12. Phase Transitions: Exact (or Almost Exact) Results for the Various Models

366

12.1.	The Ising model in one dimension	366
12.2.	The <i>n</i> -vector models in one dimension	372
12.3.	The Ising model in two dimensions	377
12.4.	The spherical model in arbitrary dimensions	389
12.5.	The ideal Bose gas in arbitrary dimensions	398
12.6.	Other models	404
Proble	ems	407
Notes		413

Chapter 13. Phase Transitions: The Renormalization Group Approach 414

13.1.	The conceptual basis of scaling	415
13.2.	Some simple examples of renormalization	418
	A. The Ising model in one dimension	418
	B. The spherical model in one dimension	410
	C. The Ising model in two dimensions	421
13.3.	The renormalization group: general formulation	423
13.4.	Applications of the renormalization group	431
	A. The Ising model in one dimension	432
	B. The spherical model in one dimension	432
	C. The Ising model in two dimensions	432
	D. The ε -expansion	433
	E. The $1/n$ expansion	430
	F Other tonics	439
13 5	Finite-size scaling	439
10.01	Cose A: $T \ge T$ (co)	441
	Case A: $I \gtrsim I_c(\infty)$	443
	Case B: $T \simeq T_c(\infty)$	443
	Case C: $T < T_c(\infty)$	444
Problems		
Notes		451
13.5. Proble Notes	D. The ε -expansion E. The $1/n$ expansion F. Other topics Finite-size scaling Case A: $T \gtrsim T_c(\infty)$ Case B: $T \simeq T_c(\infty)$ Case C: $T < T_c(\infty)$ ems	436 439 439 441 443 443 444 449 449

Chapter 14.	Fluctuations		452
	14.1.	Thermodynamic fluctuations	453
	14.2.	Spatial correlations in a fluid	456
	14.3.	The Einstein-Smoluchowski theory of the Brownian	
		motion	459
	14.4.	The Langevin theory of the Brownian motion	464
	14.5	Approach to equilibrium: the Fokker–Planck equation	469
	14.6	Spectral analysis of fluctuations: the Wiener-Khintchine	
	1	theorem	474
	14.7	The fluctuation-dissipation theorem	481
	14.8	The Onsager relations	484
	Proble	ms	489
	Notes		492
	1.000		

Contents

APPENDIXES

495

A.	Influence of boundary conditions on the distribution of	
	quantum states	495
в	Certain mathematical functions	497
2.	Stirling's formula for v!	499
	The Dirac δ -function	501
C.	"Volume" and "surface area" of an <i>n</i> -dimensional sphere	
-	of radius R	504
D.	On Bose-Einstein functions	506
E.	On Fermi–Dirac functions	508
Ē.	On Watson functions	510
Notes		512

BIBLIOG	RAPHY
INDEX	

513 523

ix