CONTENTS

ERRATA				
PAR	T ONE.	VECTORS AND FORMS		
1.	Mathem	natical Preliminaries	3	
	1-1.	Number Space, Points, and Coordinates, 3		
	1-2.	Composition of Mappings, 5		
	1-3.	Some Useful Theorems, 9		
	1-4.	Systems of Autonomous First-Order Differential Equations, 12		
	1-5.	Vector Spaces, Dual Spaces, and Algebras, 16		
2.	Vector 1	Fields	21	
	2-1.	The Tangent to a Curve at a Point, 21		
	2-2.	The Tangent Space $T(E_n)$ and Vector Fields on E_n , 26		
	2-3.	Operator Representations of Vector Fields, 29		
	2-4.	Orbits, 34		
	2-5.	Linear and Quasilinear First-Order Partial Differential Equations, 38		
	2-6.	The Natural Lie Algebra of $T(E_n)$, 51		
	2-7.	Lie Subalgebra of $T(E_n)$ and Systems of Linear First-Order Partial Differential Equations, 56		
	2-8.	Behavior under Mappings, 65		

xiii

xiv	CONTI	ENTS				
3.	Exterio	or Forms	77		5-15.	Integration of a Differe
	3-1.	The Dual Space $T^*(E)$ 77			5-16.	Equivalent Differential
	3-2.	The Exterior or "Veck" Product. 83			5-17.	Horizontal and Vertical
	3-3.	Algebraic Results, 88			5-18.	<i>n</i> -Forms and Integratio
	3-4.	Inner Multiplication, 93			J-19. Dofor	The Adjoint of a Linea
	3-5.	Top Down Generation of Bases, 100			Keler	ences for Further Study,
	3-6.	Ideals of $\Lambda(E_n)$, 104				
	3-7.	Behavior under Mappings, 109		PAI	RT TWO	O. APPLICATIONS TO
4	Exterio	nr Derivatives Lie Derivatives and Internation	100	6.	Isovect	or Methods for Second
		The Derivatives, the Derivatives, and Integration	122		rquanc	ons
	4-1.	The Exterior Derivative, 122			6-1.	The Graph Space of Sol
	4-2.	Closed Ideals and a Confluence of Ideas, 131			()	Equations, 235
	4-3. 1 1	The Derheum Class of a 1 December 1.16			0-2.	Kinematic Space and the
	4-4.	Theorem 141			0-3. 6 A	Explicit Characterization
	4-5.	Finite Deformations and Lie Derivatives 151			0-4. 6 5	Explicit Characterizatio
	4-6.	Ideals and Isovector Fields 160			0-5.	Balance Forms. 248
	4-7.	Integration of Exterior Forms, Stokes' Theorem, and the Divergence Theorem, 167			6-6.	Isovectors of the Balance Solutions, 251
					6-7.	Examples, 253
					6-8.	Similarity Variables and
5.	Antiexa	act Differential Forms and Homotopy Operators	174		6-9.	Inverse Isovector Metho
	5-1.	Perspective, 174			6-10.	Dimension Reduction in
	5-2.	Starshaped Regions, 175				of Isovectors, 277
	5-3.	The Homotopy Operator H, 176			6-11.	Contact Forms of High
	5-4.	The Exact Part of a Form and the Vector Subspace of Exact Forms, 180		7.	Calculu	is of Variations
	5-5.	The Module of Antiexact Forms, 181			7-1	Formulation of the Proj
	5-6.	Representations, 184			7-2.	Finite Variations Statio
	5-7.	Change of Center, 187				Equations, 292
	5-8.	Behavior under Mappings, 189			7-3.	Properties of Euler-Lag
	5-9.	An Introductory Problem, 191				Maps, 299
	5-10.	Representations for 2-Forms That Are Not Closed, 197			7-4.	Noetherian Vector Fie Currents, 305
	5-11.	Differential Systems of Degree k and Class r , 199			7-5.	Boundary Conditions and
	5-12.	Integration of the Connection Equations, 202			7-6.	Problems with Boundar
	5-13.	The Attitude Matrix of a Differential System, 204				Constraints, 318
	5-14.	Integration of the Curvature Equations, 208			Refe	rences for Further Study,

فيستخدمه تحتيك

- 5-15. Integration of a Differential System, 210
- 5-16. Equivalent Differential Systems, 212
- 5-17. Horizontal and Vertical Ideals of a Distribution, 215
- 5-18. *n*-Forms and Integration, 221

5-19. The Adjoint of a Linear Operator on $\Lambda(E_n)$, 224 References for Further Study, 232

PART TWO. APPLICATIONS TO MATHEMATICS

6. Isovector Methods for Second-Order Partial Differential Equations

235

287

- 6-1. The Graph Space of Solutions to Partial Differential Equations, 235
- 6-2. Kinematic Space and the Contact 1-Forms, 237
- 6-3. The Contact Ideal and Its Isovectors, 238
- 6-4. Explicit Characterization of TC(K), 243
- 6-5. Second-Order Partial Differential Equations and Balance Forms, 248
- 6-6. Isovectors of the Balance Ideal and Generation of Solutions, 251
- 6-7. Examples, 253
- 6-8. Similarity Variables and Similarity Solutions, 265
- 6-9. Inverse Isovector Methods, 271
- 6-10. Dimension Reduction in the Calculation of Isovectors, 277
- 6-11. Contact Forms of Higher Order, 281

7. Calculus of Variations

- 7-1. Formulation of the Problem, 287
- 7-2. Finite Variations, Stationarity, and the Euler-Lagrange Equations, 292
- 7-3. Properties of Euler-Lagrange Forms and Stationarizing Maps, 299
- 7-4. Noetherian Vector Fields and Their Associated Currents, 305
- 7-5. Boundary Conditions and the Null Class, 311
- 7-6. Problems with Boundary Integrals and Differential Constraints, 318

References for Further Study, 326

xvi CONTENTS

PART THREE. APPLICATIONS TO PHYSICS

				10-10.	Direct Integration of
8.	Modern	n Thermodynamics	331	10-11.	Momentum-Energy (
	8-1.	Formulation of the Problem, 331		10.10	Forces, 429
	8-2.	The Work Function for Thermostatically Conservative		10-12.	General Symmetry G
		Forces, 333		10-13.	Operator-Valued Cor
	8-3.	Internal Energy, Heat Addition, and Irreversibility, 336		10-14.	Properties of D and Forms, 437
	8-4.	Homogeneous Systems with Internal Degrees of Freedom, 343		10-15. 10-16.	Lie Connections, 440 The Minimal Replace
	8-5.	Homogeneous Systems with Nonconservative Forces, 349		10-17. 10-18.	Variations and the Fi
	8-6.	Nonequilibrium Thermodynamics, 355		Referen	nces for Further Study
	8-7.	Reformulation as a Well Posed Mathematical Problem, 357		Appendix	,
9.	Electro	dynamics with Electric and Magnetic Charges	361	Addendum 1	
	9-1.	The Four-Dimensional Base Space, 361		Addondum 2	
	9-2.	Electrodynamics with Free Magnetic Charge and Current, 365			
	9-3.	General Solutions of Maxwell's Equations, 367		Tindex	
	9-4.	The Ray Operator and Explicit Representations, 369			
	9-5.	Properties of the Field Equations and Their Solutions, 372			
	9-6.	Constitutive Relations and Wave Properties, 377			
	9-7.	Variational Formulation of the Field Equations, 382			
	9-8.	Field Induced Momentum and Force Densities, 386			
10.	Gauge	Theories	394		
	10-1.	The Origin of Gauge Theories, 394			
	10-2.	The Minimal Replacement Construct, 396			
	10-3.	Minimal Coupling, 399			
	10-4.	Gauge Connection 1-Forms and the Gauge Covariant Exterior Derivative, 399			
	10-5.	Gauge Covariant Differentiation of Group Associated Quantities, 405			
	10-6.	Derivation of the Field Equations, 411			
	10-7.	Transformation Properties and Gauge Covariance, 416			
	10-8.	Integrability Conditions and Current Conservation, 418			

10-9. Gauge Group Orbits

- Gauge Group Orbits and the Antiexact Gauge, 422
 Direct Integration of the Field Equations, 425
 Momentum-Energy Complexes and Interaction Forces, 429
 General Symmetry Groups of the Action *n*-Form, 432
 Operator-Valued Connection 1-Forms, 434
 Properties of *D* and Operator-Valued Curvature
- Forms, 437
- 10-15. Lie Connections, 440
- 10-16. The Minimal Replacement Construct, 442
- 10-17. Variations and the Field Equations, 448
- 10-18. Gauge Theory for the Poincaré Group, 454

References for Further Study, 459

Appendix	461
Addendum 1	464
Addendum 2	467
Index	499