CONTENTS

С	ONTE	NTS OVERVIEW	vii
A	CKNC	WLEDGEMENTS	xxi
P	REFA	CE	xxiii
I	TH	E ELEMENTS	1
Pl	REVII	$\mathbf{E}\mathbf{W}^{*}$	3
1	THE	EXCITEMENT OF CONTROL ENGINEERING	5
	1.1	Preview	5
	1.2	Motivation for Control Engineering	5
	1.3	Historical Periods of Control Theory	9
	1.4	Types of Control-System Design	10
	1.5	System Integration	11
	1.6	Summary	18
	1.7	Further Reading	19
2-	INTI	RODUCTION TO THE PRINCIPLES OF FEEDBACK	21
	2.1	Preview	21
	2.2	The Principal Goal of Control	21
	2.3	A Motivating Industrial Example	22
	2.4	Definition of the Problem	27
	2.5	Prototype Solution to the Control Problem via Inversion	29
	2.6	High-Gain Feedback and Inversion	32
	2.7	From Open- to Closed-Loop Architectures	34

	2.8	Trade-offs Involved in Choosing the Feedback Gain	36
	2.9	Measurements	36
	2.10	Summary	38
	2.11	Further Reading	39
3	MOD	ELING	41
	3.1	Preview	41
	3.2	The Raison d'être for Models	41
	3.3	Model Complexity	42
	3.4	Building Models	44
	3.5	Model Structures	45
	3.6	State Space Models	45
	3.7	Solution of Continuous-Time State Space Models	49
	3.8	High-Order Differential and Difference-Equation Models	50
	3.9	Modeling Errors	50
	3.10	Linearization	52
	3.11	Case Studies	57
	3.12	Summary	58
	3.13	Further Reading	60
	3.14	Problems for the Reader	61
4	CON	TINUOUS-TIME SIGNALS AND SYSTEMS	65
	4.1	Preview	65
	4.2	Linear Continuous-Time Models	65
	4.3	Laplace Transforms	66
	4.4	Laplace Transform. Properties and Examples	67
	4.5	Transfer Functions	70
	4.6	Stability of Transfer Functions	74
	4.7	Impulse and Step Responses of Continuous-Time Linear Systems	74
	4.8	Poles, Zeros, and Time Responses	76
۷	4.9	Frequency Response	85
	4.10	Fourier Transform	92
	4.11	Models Frequently Encountered	97
	4.12	Modeling Errors for Linear Systems	99
	4.13	Bounds for Modeling Errors	103
	4.14	Summary	104
	4.15	Further Reading	108
	4.16	Problems for the Reader	110

IJ	[SI	SO CONTROL ESSENTIALS	117
Р	REVI	EW	119
			119
5		LYSIS OF SISO CONTROL LOOPS	121
	5.1	Preview	121
	5.2	Feedback Structures	121
	5.3	Nominal Sensitivity Functions	125
	5.4	Closed-Loop Stability Based on the Characteristic Polynomial	127
	5.5	Stability and Polynomial Analysis	128
	5.6	Root Locus (RL)	134
	5.7	Nominal Stability using Frequency Response	138
	5.8	Relative Stability: Stability Margins and Sensitivity Peaks	143
	5.9	Robustness	145
	5.10	Summary	150
	5.11	Further Reading	152
	5.12	Problems for the Reader	154
6	CLAS	SSICAL PID CONTROL	159
	6.1	Preview	159
	6.2	PID Structure	159
	6.3	Empirical Tuning	162
	6.4	Ziegler-Nichols (Z-N) Oscillation Method	162
	6.5	Reaction Curve Based Methods	166
	6.6	Lead-Lag Compensators	170
	6.7	Distillation Column	171
	6.8	Summary	174
	6.9	Further Reading	175
	6.10	Problems for the Reader	176
7	SYNT	THESIS OF SISO CONTROLLERS	170
		Preview	179 170
	7.2	Polynomial Approach	179
	7.3	PI and PID Synthesis Revisited by using Pole Assignment	$\frac{179}{187}$
	7.4	Smith Predictor	187
	7.5	Summary	189 191
	7.6	Further Reading	191 192
	7.7	Problems for the Reader	$\frac{192}{193}$
			190

Contents

II	I SI	SO CONTROL DESIGN	197
P	REVIE	ΣW	199
8	FUN	DAMENTAL LIMITATIONS IN SISO CONTROL	201
	8.1	Preview	201
	8.2	Sensors	202
	8.3	Actuators	203
	8.4	Disturbances	206
	8.5	Model-Error Limitations	206
	8.6	Structural Limitations	207
	8.7	An Industrial Application (Hold-Up Effect in Reversing Mill)	222
	8.8	Remedies	225
	8.9	Design Homogeneity, Revisited	232
	8.10	Summary	232
	8.11	Further Reading	235
	8.12	Problems for the Reader	237
9	FREG	QUENCY-DOMAIN DESIGN LIMITATIONS	241
	9.1	Preview	241
	9.2	Bode's Integral Constraints on Sensitivity	242
	9.3	Integral Constraints on Complementary Sensitivity	246
	9.4	Poisson Integral Constraint on Sensitivity	249
	9.5	Poisson Integral Constraint on Complementary Sensitivity	254
	9.6	Example of Design Trade-offs	256
	9.7	Summary	259
	9.8	Further Reading	260
	9.9	Problems for the Reader	263
10	ARC	HITECTURAL ISSUES IN SISO CONTROL	265
٠	10.1	Preview	265
	10.2	Models for Deterministic Disturbances and References	265
	10.3	Internal Model Principle for Disturbances	267
	10.4	Internal Model Principle for Reference Tracking	271
	10.5	Feedforward	271
	10.6	Industrial Applications of Feedforward Control	279
	10.7	Cascade Control	281
	10.8	Summary	285

	10.0	Easthan Day I'm	
		Further Reading Problems for the Reader	288
	10.10	r roblems for the Reader	289
11	DEAI	LING WITH CONSTRAINTS	293
	11.1	Preview	293
	11.2	Wind-Up	294
	11.3	Anti-Wind-up Scheme	295
	11.4	State Saturation	301
	11.5	Introduction to Model Predictive Control	306
	11.6	Summary	306
	11.7	Further Reading	307
	11.8	Problems for the Reader	309
IV	DI	GITAL COMPUTER CONTROL	315
PR	EVIE	W	317
12 MODELS FOR SAMPLED-DATA SYSTEMS			319
	12.1	Preview	319
	12.2	Sampling	319
	12.3	Signal Reconstruction	321
	12.4	Linear Discrete-Time Models	322
	12.5	The Shift Operator	322
	12.6	Z-Transform	323
	12.7	Discrete Transfer Functions	324
	12.8	Discrete Delta-Domain Models	328
	12.9	Discrete Delta-Transform	331
	12.10	Discrete Transfer Functions (Delta Form)	335
	12.11	Transfer Functions and Impulse Responses	336
	12.12	Discrete System Stability	336
	12.13	Discrete Models for Sampled Continuous Systems	337
	12.14	Using Continuous State Space Models	340
	12.15	Frequency Response of Sampled-Data Systems	342
	12.16	Summary	345
		Further Reading	348
	12.18	Problems for the Reader	349

13 DIGITAL CONTROL

xiii

	13.1	Preview	353
	13.2	Discrete-Time Sensitivity Functions	353
	13.3	Zeros of Sampled-Data Systems	355
	13.4	Is a Dedicated Digital Theory Really Necessary?	357
	13.5	Approximate Continuous Designs	358
	13.6	At-Sample Digital Design	362
	13.7	Internal Model Principle for Digital Control	372
	13.8	Fundamental Performance Limitations	376
	13.9	Summary	380
	13.10	Further Reading	381
	13.11	Problems for the Reader	383
14	HYBI	RID CONTROL	387
	14.1	Preview	387
	14.2	Hybrid Analysis	387
	14.3	Models for Hybrid Control Systems	387
	14.4	Analysis of Intersample Behavior	391
	14.5	Repetitive Control Revisited	393
	14.6	Poisson Summation Formula	394
	14.7	Summary	396
	14.8	Further Reading	397
	14.9	Problems for the Reader	398
v	AD	VANCED SISO CONTROL	403
PR	EVIE	w	405
15	SISO	CONTROLLER PARAMETERIZATIONS	407
	15.1	Preview	407
٠	15.2	Open-Loop Inversion Revisited	407
	15.3	Affine Parameterization: The Stable Case	408
	15.4	PID Synthesis by using the Affine Parameterization	418
	15.5	Affine Parameterization for Systems Having Time Delays	427
	15.6	Undesirable Closed-Loop Poles	430
	15.7	Affine Parameterization: The Unstable Open-Loop Case	438
	15.8	Discrete-Time Systems	446
	15.9	Summary	447

	Further reading	451
15.11	Problems for the Reader	453
16 CONT	FROL DESIGN BASED ON OPTIMIZATION	457
16.1	Preview	457
16.2	Optimal Q (Affine) Synthesis	458
16.3	Robust Control Design with Confidence Bounds	464
16.4	Cheap Control Fundamental Limitations	478
16.5	Frequency-Domain Limitations Revisited	480
16.6	Summary	482
16.7	Further Reading	483
16.8	Problems for the Reader	486
17 LINE	AR STATE SPACE MODELS	491
17.1	Preview	491
17.2	Linear Continuous-Time State Space Models	491
17.3	Similarity Transformations	492
17.4	Transfer Functions Revisited	494
17.5	From Transfer Function to State Space Representation	496
17.6	Controllability and Stabilizability	498
17.7	Observability and Detectability	508
17.8	Canonical Decomposition	513
17.9	Pole-Zero Cancellation and System Properties	516
17.10	Summary	519
17.11	Further Reading	521
17.12	Problems for the Reader	523
18 SYNTHESIS VIA STATE SPACE METHODS 527		
18.1	Preview	527
18.2	Pole Assignment by State Feedback	527
18.3	Observers	531
18.4	Combining State Feedback with an Observer	537
18.5	Transfer-Function Interpretations	539
18.6	Reinterpretation of the Affine Parameterization of all Stabilizing Controllers	545
18.7	State Space Interpretation of Internal Model Principle	546
18.8	Trade-Offs in State Feedback and Observers	551

		Dealing with Input Constraints in the Context of State-Estimate Feedback	552
		Summary	553
		Further Reading	555
		Problems for the Reader	556
19 I	NTR	ODUCTION TO NONLINEAR CONTROL	559
	19.1	Preview	559
	19.2	Linear Control of a Nonlinear Plant	559
	19.3	Switched Linear Controllers	564
	19.4	Control of Systems with Smooth Nonlinearities	567
	19.5	Static Input Nonlinearities	567
	19.6	Smooth Dynamic Nonlinearities for Stable and Stably Invertible Models	568
	19.7	Disturbance Issues in Nonlinear Control	575
	19.8	More General Plants with Smooth Nonlinearities	580
	19.9	Nonsmooth Nonlinearities	583
	19.10	Stability of Nonlinear Systems	585
	19.11	Generalized Feedback Linearization for nonstability-Invertible Plant	ts595
	19.12	Summary	603
	19.13	Further Reading	604
	19.14	Problems for the Reader	607
VI	M	IMO CONTROL ESSENTIALS	609
\mathbf{PR}	EVIE	W	611
20 .	ANA]	LYSIS OF MIMO CONTROL LOOPS	613
	20.1	Preview	613
	20.2	Motivational Examples	613
	20.3	Models for Multivariable Systems	615
	20.4	The Basic MIMO Control Loop	624
	20.5	Closed-Loop Stability	626
	20.6	Steady-State Response for Step Inputs	630
	20.7	Frequency-Domain Analysis	631
	20.8	Robustness Issues	641
	20.9	Summary	644
	20.10) Further Reading	646

Contents		xvii
20.11	Problems for the Reader	648
21 EXPI	LOITING SISO TECHNIQUES IN MIMO CONTROL	653
21.1	Preview	653
21.2	Completely Decentralized Control	653
21.3	Pairing of Inputs and Outputs	657
21.4	Robustness Issues in Decentralized Control	660
21.5	Feedforward Action in Decentralized Control	662
21.6	Converting MIMO Problems to SISO Problems	664
21.7	Industrial Case Study (Strip Flatness Control)	666
21.8	Summary	670
21.9	Further Reading	671
21.10	Problems for the Reader	672
VII N	IIMO CONTROL DESIGN	675
PREVIEW 6		677
22 DESI	GN VIA OPTIMAL CONTROL TECHNIQUES	679
22.1	Preview	679
22.2	State-Estimate Feedback	679
22.3	Dynamic Programming and Optimal Control	682
22.4	The Linear Quadratic Regulator (LQR)	685
22.5	Properties of the Linear Quadratic Optimal Regulator	687
22.6	Model Matching Based on Linear Quadratic Optimal Regulators	692
22.7	Discrete-Time Optimal Regulators	695
22.8	Connections to Pole Assignment	696
22.9	Observer Design	698
22.10	Linear Optimal Filters	699
22.11	State-Estimate Feedback	713
22.12	Transfer-Function Interpretation	713
22.13	Achieving Integral Action in LQR Synthesis	716
22.14	Industrial Applications	718
22.15	Summary	730
22.16	Further Reading	733
22.17	Problems for the Reader	736
23 MOD	EL PREDICTIVE CONTROL	739

	23.1	Preview	739
			740
			744
		Stability	748
		Linear Models with Quadratic Cost Function	751
		State Estimation and Disturbance Prediction	756
		Rudder Roll Stabilization of Ships	758
	23.7	Summary	762
		Further Reading	763
		Problems for the Reader	766
24	FUNI	DAMENTAL LIMITATIONS IN MIMO CONTROL	771
	24.1	Preview	771
	24.2	Closed-Loop Transfer Function	772
	24.3	MIMO Internal Model Principle	773
	$^{-}24.4$	The Cost of the Internal Model Principle	773
	24.5	RHP Poles and Zeros	774
	24.6	Time-Domain Constraints	775
	24.7	Poisson Integral Constraints on MIMO Complementary Sensitivity	780
	24.8	Poisson Integral Constraints on MIMO Sensitivity	782
	24.9	Interpretation	783
		An Industrial Application: Sugar Mill	785
		Nonsquare Systems	796
		Discrete-Time Systems	800
		Summary	800
		Further Reading	802
		Problems for the Reader	804
٠V	III .	ADVANCED MIMO CONTROL	807
PI	REVII	EW	809
25	MIM	O CONTROLLER PARAMETERIZATIONS	811
	25.1	Preview	811
	25.2	Affine Parameterization: Stable MIMO Plants	811
	25.3	Achieved Sensitivities	813
	25.4	Dealing with Model Relative Degree	813

	25.5	Dealing with NMP Zeros	824
	25.6	Affine Parameterization: Unstable MIMO Plants	841
	25.7	State Space Implementation	844
	25.8	Summary	847
	25.9	Further Reading	848
	25.10	Problems for the Reader	850
26	DECO	DUPLING	853
	26.1	Preview	853
	26.2	Stable Systems	854
	26.3	Pre- and PostDiagonalization	861
	26.4	Unstable Systems	863
	26.5	Zeros of Decoupled and Partially Decoupled Systems	873
	26.6	Frequency-Domain Constraints for Dynamically Decoupled Sy	stems 876
	26.7	The Cost of Decoupling	878
	26.8	Input Saturation	882
	26.9	MIMO Anti-Wind-Up Mechanism	883
	26.10	Summary	891
	26.11	Further Reading	893
	26.12	Problems for the Reader	895
			000

APPENDICES (These can be viewed on the accompanying CD-ROM or at: http://www.prenhall.com/goodwin.)

A NOTATION, SYMBOLS, AND ACRONYMS

B SMITH-MCMILLAN FORMS

- B.1 Introduction
- B.2 Polynomial Matrices
- B.3 Smith Form for Polynomial Matrices
- B.4 Smith–McMillan Form for Rational Matrices
- B.5 Poles and Zeros
- B.6 Matrix Fraction Descriptions (MFD)

C RESULTS FROM ANALYTIC FUNCTION THEORY

- C.1 Introduction
- C.2 Independence of Path
- C.3 Simply Connected Domains

- C.4 Functions of a Complex Variable
- C.5 Derivatives and Differentials
- C.6 Analytic Functions
- C.7 Integrals Revisited
- C.8 Poisson and Jensen Integral Formulas
- C.9 Application of the Poisson–Jensen Formula to Certain Rational Functions
- C.10 Bode's Theorems

D PROPERTIES OF CONTINUOUS-TIME RICCATI EQUATIONS

- D.1 Solutions of the CTDRE
- D.2 Solutions of the CTARE
- D.3 The stabilizing solution of the CTARE
- D.4 Convergence of Solutions of the CTARE to the Stabilizing Solution of the CTARE
- D.5 Duality between Linear Quadratic Regulator and Optimal Linear Filter

E MATLAB SUPPORT