CONTENTS

Preface

vii

I.	Canonical Operator Formalism of Quantum Mechanics		1
	1.1	Canonical Quantization	1
		Classical Mechanics	1
		Quantum Mechanics – Schrodinger Picture	2
	1.2	Heisenberg Picture	3
	1.3	Interaction Picture	4
	1.4	Quantum Theory of Fields	5

II. Path Integral Formalism 8 2.1 Path Integral in Quantum Mechanics 8 Representation of Feynman Kernel in terms of Phase Space 8 Path Integral 8 Feynman's Path Integral in Configuration (q-) Space 11 2.2 Path Integral in Quantum Field Theory 12

III.	Path Integral Formalism of Fermi Fields		14
	3.1	Grassmann Variables (anti-commuting c number variables)	14
	3.2	Coherent State Representation of Fermi Operators in Terms of	
		Grassmann's Numbers	17
		Review of Coherent State Representation of Bose Operators	17
		Coherent State Representation of Fermi Operators	18
	3.3	Holomorphic Path Integral Representation	19
	3.4	Dirac Field	21

IV.	Pertu	urbation Theory and Feynman Graphs	22
	4.1	Generating Functional	22
		Definition	22
		Calculation of $Z_0[j]$	23
	4.2	Feynman Propagator	26
	4.3	Perturbation Expansion and Feynman Rules	27
	4.4	Proper Graphs and Theory of Effective Action	33
		Connected Diagrams, Proper Diagrams	33
		Theory of Effective Action	36

V.	Eucl	idean Field Theory and Statistical Mechanics	38
	5.1	Statistical Mechanics, Euclidean Path Integral and Euclidean Field Theory	38
	5.2	Perturbation Expansion	40
	5.3	Application of BCS Theory of Superconductivity Feynman Rules	42 42
		Derivation of Landau-Ginzburg Equation	45
		Higgs Mechanism	51
		Abrikosov-Nielsen-Olesen Vortex Solution	55

Point Canonical Transformation		59
6.1	Point Canonical Transformation in Operator Formalism	59
6.2	Weyl Ordering and Midpoint Prescription of Path Integral	61
	Weyl Ordering	61
	Midpoint Prescription and Weyl Ordering	62
	ΔV	65
6.3	Point Canonical Transformation in Path Integral	65
6.4	Perturbation Expansion in Phase Space Path Integral	68
	Point 6.1 6.2 6.3 6.4	 Point Canonical Transformation 6.1 Point Canonical Transformation in Operator Formalism 6.2 Weyl Ordering and Midpoint Prescription of Path Integral Weyl Ordering Midpoint Prescription and Weyl Ordering ΔV 6.3 Point Canonical Transformation in Path Integral 6.4 Perturbation Expansion in Phase Space Path Integral

viii

VII.	Large N Collective Variables		74
	7.1	The Collective Field Theory of N Bose Particles	74
		High Density Bose Plasma	77
		Collective Motions of N-Identical Harmonic Oscillators	79
	7.2	Planar Limit of SU(N) Symmetric Hermitian Matrix Model	81
		Planar Limit	81
		Collective Field Theory	83
		Calculation of V _{coll}	86
		Large N Limit	87
		Collective Excitations	89

VIII.	. Variational Method		91
	8.1	Feynman's Variational Method	91
	8.2	Lee Low Pines Theory of Polaron	95
		Polaron Problem	95
		Change of Variables	96
		Variational Method Applied to the Polaron Problem	99
		Remarks	104
	8.3	Ground State Energy of the SU(N) Symmetric Hermitian	
		Matrix Model	105

IX.	WKE	Method I. Instantons	108
	9.1	Steepest Descent Method of Integration	108
	9.2	Double Well Potential: an Example	109
	9.3	Ground State Energy of Double Well Potential in Terms of the Standard WKB Calculation	124

ix

X.	WKB	Method II. Solitons	129
	10.1	Non-linear Scalar Field Theory Model in 2 Dimensions and its	
		Classical Solutions	129
		Mechanical Analogue Model	130
		Classical Solutions	131
		Stability of the Classical Soliton Solution	136
	10.2	Perturbation Theory and Renormalization	137
	10.3	Solitons in Quantum Field Theory	140
		Soliton Solution	140
		Collective Coordinates	141
		Momentum Integration	143
		Expansion About Soliton Solution	145
		One Loop Quantum Corrections of Soliton Mass and	
		Renormalization	148

AI.	Quantum Theory of Non-Abelian Gauge Fields	153
	A1.1 Classical Gauge Field Theory	153
	QED	153
	Yang-Mills Field Theory	154
	A1.2 Quantum Theory of Yang-Mills Fields	156
	$A_0 = 0$ Gauge	156
	Canonical Formalism	156
	Symmetry	157
	Quantization	159
	A1.3 Equivalence of $A_0 = 0$ Canonical Quantization and Covariant	
	Quantization	159

AII.	Spin System and Lattice Gauge Theory	163
	A2.1 O(N) Heisenberg Spin System	163
	O(2)	163
	O(N)	164
	A2.2 SU(N) Symmetric Hermitian Matrix Model	164

A2.3 SU(N) Matrix Model (Chiral Model)	165
A2.4 SU(N) Gauge Theory: Kogut-Susskind Model	167
A2.5 Strong Coupling Expansion	169
A2.6 Renormalization and the β Function	170
AIII. Stochastic Quantization	173
Notes	211

Index

And a state of the state of the

in the second second

215