CONTENTS

	1
TRODUCTION	
 HAPTER 1. TRANSPORT PROPERTIES OF SIMPLE FLUIDS ONFINED IN NARROW CAPILLARY PORES 1. Experimental Studies 1.1. Diffusion coefficients 	3 3 4 9
 1.2. Viscosity 2. Computer Simulations of the Transport Processes in Fluids Confined in Narrow Capillary Pores 	13 15
2.1. Diffusion 2.1.1. Slit pore 2.1.2. Cylindrical and sphere-cylindrical pores	18 28
 2.1.2. Cylindrical and opticity of the diffusion coefficients for fluids confined in porous media 2.2. The shear viscosity and thermal conductivity 2.2.1. Slit pore 	39 44 46
3. Theory References	53 57

THE THE ALIZATION OF THE ZWANZIG-MORI	
CHAPTER 2. GENERALIZATION OF THE ZWANZIG-MORI	62
PROJECTION OPERATOR METHOD	62
1. Collective Dynamic Variables	62
1.1. The Liouville equation for collective dynamic variables	63
to provide a collective dynamic variables	68
1.3. Simplification of expansions of concerve dynamic variables	69
Tachnique	69
at Definition of the generalized Zwanzig-Mon projection operation	
2.2. Systems of matrix equations for projections of concentre	71
dynamic variables	74
2.3 Summary of the projection scheme	75
2.4. The generalized Langevin equation (GLE)	77
References	

CHAPTER 3. KINETIC THEORY OF DENSE, STRONGLY	79
NUONOGENEOUS FLUIDS	12
1. The Master Equations for Mixtures of Dense, Strongly	-0
1. The Master Equations for Manual and	79
Inhomogeneous Fluids	

CONTENTS	5
----------	---

	1.1. Statistical mechanical description of mixtures of inhomogeneous	
	fluids	79
	1.2. The GLEs for the singlet distribution functions of	
2	inhomogeneous fluid mixtures	82
۷.	Calculation of the Frequency Matrix $i\Omega(x, x')$	85
	2.1. The static correlation matrix and the Ornstein-Zernike equation 2.2. Calculation of $i\Omega^{0}(x, x')$	85
	2.2. Calculation of $i\Omega^{2}(x, x')$ 2.3. Calculation of $i\Omega^{2}(x, x')$	87
	2.3. Calculation of $i\Omega^{E}(x, x')$ 2.4. Calculation of $i\Omega^{E}(x, x')$	89
	2.5. Explicit expressions for the interactional part of the frequency	93
	matrix $i\Omega(x, x')$	04
3	The Explicit Form of the Mean-Field Kinetic Equations for	96
	Inhomogeneous Fluid Mixtures	07
4.	Summary of the Kinetic Theory	97 99
	eferences	100
		100
CHAR	TER 4. TRANSPORT THEORY OF DENSE, STRONGLY	
	MOGENEOUS FLUIDS	102
1.	The Thirteen-Moments Approximation Equations	102
	1.1. The generalized Hermite polynomials and continuum variables	102
	1.2. The thirteen-moments approximation equations	106
2.	The linearized Navier-Stokes Equations	115
	2.1. Analysis of the differential equations of the thirteen-moments	110
	approximation	115
	2.2. The linearized Navier-Stokes equations for dense, strongly	
	inhomogeneous fluids	120
3.	Transport Coefficients of Inhomogeneous Fluids	131
Re	ferences	134
CHAF	TER 5. TRANSPORT COEFFICIENTS OF INHOMOGENEOUS	
FLUII	OS CONFINED IN NARROW CAPILLARY PORES	136
1.	Simplification of the Quasihydrodynamic Equations and	
•	Expressions for the Transport Coefficients	136
2.	Transport Coefficients in Immediate Vicinity of Structured	
•	Solid Walls	139
3.	Dense Homogeneous Fluids	140
4.	Transport Coefficients of Fluids Inhomogeneous in Only One Direction	143
5.	Correlations between Transport Coefficients and Local Values of the	
	Number Density	148
6. D	Recommendations for Applications of the Above Transport Theory	152
ке	ferences	154

CONTENTS

APPENDIX. GENERALIZED COMPRESSIBILITY EQUATION FOR	
INHOMOGENEOUS FLUIDS	156
1. One Remarkable Corollary of the Mechanical Equilibrium Condition	156
2. The Explicit Expression for $\wp[n; r_1, r_2]$	158
3. The Generalized Compressibility Equation	160
4. Pressure as the Local Grand Canonical Potential Density	160
References	162

SUBJECT INDEX