TABLE OF CONTENTS

Prefac	ce		v
1.	Preli	minaries on Waves	1
	1.1	Governing Equations of the Fluid Motion, 2	
		Eulerian and Lagrangian Coordinates, 6	
	1.2	The Wave Equation, 8	
	1.3	Simple Solutions : Sinusoidal Waves, 10	
	1.4	Fundamental Solutions of Wave Equation, 14	
2.	Sound	d Waves	21
	2.1	Waves in Compressible Fluids, 21	
	2.2	Multi-pole Radiation, 23	
	2.3	Generation of Sound, 27	
	2.4	Scattering of Sound, 34	
		Scattering by a Spherical Bubble in a Liquid, 39 Scattering by a Small Body, 42	
	2.5	Nonlinear Acoustics, 45	
		Quadrapole Radiation, 45	
		Scattering of Sound by Sound, 48 Acoustic Streaming, 53	
	2.6	Simple Wave and Shock Wave, 56	
	2.7	Structure of Shock - Burgers Equation, 69	

Derivation of Burgers Equation, 70		
Solution of Burgers Equation, 73		
An Example to Illustrate the Shock Structure, 76		

- 2.8 One-Dimensional Nonlinear Wave Riemann Invariants, 81
- 2.9 Sound Waves With Thermal Dissipation, 88

3. Water Waves

- 3.1 Governing Equations of Water Waves, 95
- 3.2 Small Amplitude Waves, 99
 Gravity Wave, 103
 Capillary Wave, 104
- 3.3 Dispersion of Waves Group Velocity, 106 Velocity of Energy Transport, 111
- 3.4 Wave Produced by a Moving Source, 115 Wave Pattern Due to a Moving Source, 121
- 3.5 Weakly Nonlinear Waves and Korteweg-DeVries Equation, 129
- 3.6 Solitary and Cnoidal Waves, 134
- 3.7 Solitons Inverse Scattering, 144
- 3.8 Nonlinear Modulation of Gravity Waves, 153
 Stokes Waves, 156
 Stability of Stokes Waves, 158
 Gravity Waves in Lagrangian Coordinates, 159
- 3.9 Hydrautic Jumps, 165

4.	Wav	es in Nonhomogeneous Media 170
	4.1	Internal Waves of Layered Fluid Media, 170 Upper Fluid Surface Free, 176
	4.2	Waves in Continuously Stratified Fluids, 179 The Case that $\rho_0 = \rho^{(0)} e^{-\beta z}$, 183
		Rigid Surface on Top, 184 Free Surface on Top, 185
	4.3	Waves in Compressible Stratified Fluids, 188
	4.4	Dynamic Equations of Bubbly Liquids, 199 A Simple Model of Bubbly Liquids, 201
	4.5	Waves in Bubbly Liquids, 202 Sound Waves, 202 Dead Zone and Negative Damping, 209 Waves in Locked Bubbly Liquids, 211
5.	Stab	ility 216
	5.1	Interfacial Conditions, 217
	5.2	The Classical Rayleigh-Taylor Stability, 223
	5.3	Rayleigh-Taylor Stability with Mass and Hear Transfer Across the Interface, 229 A Simplified Version, 236 Nonlinear Stability Based on Simplified Version, 239
	5 /	Stability of Spherical Bubble in Motion 244

5.4 Stability of Spherical Bubble in Motion, 244 Stability of Expanding and Collapsing Bubbles, 252

5.5	The Classical Kelvin-Helmholtz Stability, 254
5.6	Variational Method and Kelvin-Helmholtz Stability, 262
	Nonlinear Analysis, 268
	Fully Nonlinear One-Mode Analysis, 271
5.7	Kelvin-Helmholtz Stability for Compressible Fluids, 272
	The Case of Semi-infinite Fluid Layers, 277
	Relationship with Two Phase Flows, 281
5.8	The Faraday Problem, 285
	Linear Stability, 288
	Nonlinear Theory, 292
	Stability of Oscillating Bubbles, 294
5.9	The Rayleigh-Benard Problem, 296
	Principle of Exchange of Stabilities, 304
	Critical Rayleigh Number, 307
	The Cell Patterns, 310
	Non-uniform Heating, 312
5.10	The Taylor-Couette Problem, 313
	Rayleigh's Criterion, 316
	Linear Stability Analysis, 319
	Narrow Gap, 323
5.11	Stability of Parallel Flows, 327
	Squire Theorem, 330
	Orr-Sommerfeld Equation, 331

Sufficient Conditions for Stability, 332

Parallel Flow of Inviscid Fluids, 334 Asymptotic Analysis and Comparison Equations, 337

5.12 Stability of Flow Down an Inclined Plane, 344
Small k Expansion, 349
Hydraulic Approximation, 353

6. Chaos

8.

360

- 6.1 The Lorenz Equations, 361
- 6.2 The Logistic Map, 375
- 6.3 Characterization of Chaos, 384
 Lyapunov Exponents, 384
 Dimensions, 387
 Dynamical Information in Experimental Data, 390
- 6.4 Almost Ill-posed Problems and Chaos, 391

Examples of Underlying Ellipticity, 394

Model Partial Differential Equations with Underlying Ellipticity, 398

Appendix 1	Some Properties of Spherical Bessel Functions	402
Appendix 2	On Surface Tension	404
Books for C	oncurrent and Further Reading	407

	8
References	409
Index	411