Contents

1 🔳	I Surve	ey of the Elementary Principles	1
•	1.1	Mechanics of a Particle 1	
	1.2	Mechanics of a System of Particles 5	
	1.3	Constraints 12	
	1.4	D'Alembert's Principle and Lagrange's Equations 16	
	1.5	Velocity-Dependent Potentials and the Dissipation Function 22	
	1.6	Simple Applications of the Lagrangian Formulation 24	
2 1	■ Varia	ational Principles and Lagrange's Equations	34
	2.1	Hamilton's Principle 34	
	2.2	Some Techniques of the Calculus of Variations 36	
	2.3	Derivation of Lagrange's Equations from Hamilton's Principle 44	
	2.4	Extension of Hamilton's Principle to Nonholonomic Systems 45	
•	2.5	Advantages of a Variational Principle Formulation 51	
	2,6	Conservation Theorems and Symmetry Properties 54	
	2.7	Energy Function and the Conservation of Energy 60	
3	■ The	Central Force Problem	70
	3.1	Reduction to the Equivalent One-Body Problem 70	
	3.2	The Equations of Motion and First Integrals 72	
	3.3	The Equivalent One-Dimensional Problem, and	
		Classification of Orbits 76	
	3.4	The Virial Theorem 83	
	3.5	The Differential Equation for the Orbit, and Integrable	
		Power-Law Potentials 86	
	3.6	Conditions for Closed Orbits (Bertrand's Theorem) 89	
	3.7	The Kepler Problem: Inverse-Square Law of Force 92	
	3.8	The Motion in Time in the Kepler Problem 96	
	3.9	The Laplace-Runge-Lenz Vector 103	
	3.10	Scattering in a Central Force Field 106	
	3.11	Transformation of the Scattering Problem to Laboratory Coordinates 115	
	2 10	The Three Body Problem 121	

4 ■ Ti	ne Kinematics of Rigid Body Motion	134
4.	The Independent Coordinates of a Rigid Body 134	. 134
4.2	2 Orthogonal Transformations 139	
4.3		
4.4	The Euler Angles 150	
4.5	The Cayley-Klein Parameters and Related Quantities 154	
4.6	Euler's Theorem on the Motion of a Rigid Body 155	
4.7	Finite Rotations 161	
4.8	Infinitesimal Rotations 163	
4.9	and a small go of a vector 1/1	
4.1	0 The Coriolis Effect 174	
5 🔳 Th	e Rigid Body Equations of Motion	184
5.1	Angular Momentum and Kinetic Energy of Motion about a Point 184	.04
5.2	Tensors 188	
5.3	The Inertia Tensor and the Moment of Inertia 191	
5.4	The Eigenvalues of the Inertia Tensor and the Principal Axis Transformation 195	
5.5	Solving Rigid Body Problems and the Euler Equations of Motion 198	
5.6	Torque-free Motion of a Rigid Body 200	
5.7	The Heavy Symmetrical Top with One Point Fixed 208	
5.8	Precession of the Equinoxes and of Satellite Orbits 223	
5.9	Precession of Systems of Charges in a Magnetic Field 230	
6 ■ Osc	cillations	238
6.1	Formulation of the Problem 238	230
6.2	The Eigenvalue Equation and the Principal Axis Transformation	241
6.3	Frequencies of Free Vibration, and Normal Coordinates 250	241
6.4	Free Vibrations of a Linear Triatomic Molecule 253	
6.5	Forced Vibrations and the Effect of Dissipative Forces 250	
6.6	Beyond Small Oscillations: The Damped Driven Pendulum and the Josephson Junction 265	ne
7 ■ The	Classical Mechanics of the	
Spec	cial Theory of Relativity	0=4
7.1	Racic Postulares of the Control of	276
7.2	Lorentz Transformations 280	
7.3	Velocity Addition and Thomas Precession 282	
7.4	Vectors and the Metric Tensor 286	

Contents		vi
Contents	*	

	1.3	1-Pornis and Tensors 209	
	7.6	Forces in the Special Theory; Electromagnetism 297	
	7.7	Relativistic Kinematics of Collisions and Many-Particle Systems 300	
	7.8	Relativistic Angular Momentum 309	
	7.9	The Lagrangian Formulation of Relativistic Mechanics 312	
	7.10	Covariant Lagrangian Formulations 318	
•	7.11	Introduction to the General Theory of Relativity 324	
8 =	The	Hamilton Equations of Motion	334
	8.1	Legendre Transformations and the Hamilton Equations of Motion 334	
	8.2	Cyclic Coordinates and Conservation Theorems 343	
1	8.3	Routh's Procedure 347	
,	8.4	The Hamiltonian Formulation of Relativistic Mechanics 349	
	8.5	Derivation of Hamilton's Equations from a Variational Principle 353	
	8.6	The Principle of Least Action 356	
9 ■	I Can	onical Transformations	368
	9.1	The Equations of Canonical Transformation 368	
	9.2	Examples of Canonical Transformations 375	
	9.3	The Harmonic Oscillator 377	
	9.4	The Symplectic Approach to Canonical Transformations 381	
	9.5	Poisson Brackets and Other Canonical Invariants 388	
	9.6	Equations of Motion, Infinitesimal Canonical Transformations, and Conservation Theorems in the Poisson Bracket Formulation 396	[
	9.7	The Angular Momentum Poisson Bracket Relations 408	
	9.8	Symmetry Groups of Mechanical Systems 412	
	9.9	Liouville's Theorem 419	
0	■ Han	nilton–Jacobi Theory and Action-Angle Variables	430
	10.1	The Hamilton-Jacobi Equation for Hamilton's Principal Function 430	
	10.2	The Harmonic Oscillator Problem as an Example of the Hamilton–Jacobi Method 434	
	10.3		
	10.4		
	10.5		
	10.6		52

10.7 Action-Angle Variables for Completely Separable System	s 457
10.8 The Kepler Problem in Action-angle Variables 466	•
11 ■ Classical Chaos	48:
11.1 Periodic Motion 484	70.
11.2 Perturbations and the Kolmogorov-Arnold-Moser Theore	m 487
11.5 Attractors 489	407
11.4 Chaotic Trajectories and Liapunov Exponents 491	
11.5 Poincaré Maps 494	
11.6 Hénon-Heiles Hamiltonian 496	
11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Par Resonance 505	ametric
11.8 The Logistic Equation 509	
11.9 Fractals and Dimensionality 516	
12 Canonical Perturbation Theory	E24
12.1 Introduction 526	526
12.2 Time-dependent Perturbation Theory 527	
12.3 Illustrations of Time-dependent Perturbation Theory 533	
12.4 Time-independent Perturbation Theory 541	
12.5 Adiabatic Invariants 549	
13 Introduction to the Lagrangian and Hamiltonian	
Formulations for Continuous Systems and Fields	• FFO
13.1 The Transition from a Discrete to a Continuous System 53	5 58
13.4 I De Lagrangian Formulation for Co.	
13.3 The Stress-energy Tensor and Conservation Theorems 560	
13.4 Hamiltonian Formulation 572	•
13.5 Relativistic Field Theory 577	
13.6 Examples of Relativistic Field Theories 583	
13.7 Noether's Theorem 589	
Appendix A Euler Angles in Alternate Conventions	
and Cayley-Klein Parameters	601
Appendix B Groups and Algebras	001
Groups and Algebras	605
Selected Bibliography	617
Author Index	623
Subject Index	
,	625