CONTENTS

	Foreword to French edition	xi
	Foreword to English edition	xv
	Introduction	xvii
	Notation	xxi
1 Elem	ents of the physical mechanisms of deformation	
and f	racture	1
1.1	Metals and alloys	2
	1.1.1 Structure	2
	1.1.2 Physical mechanisms of deformation	9
	1.1.3 Physical mechanisms of fracture	18
1.2	Other materials	24
	1.2.1 Polymers	24
	1.2.2 Granular material: concrete	29
	1.2.3 Wood	33
	Bibliography	35
2 Ele	ments of continuum mechanics and thermodynamics	37
2.1	Statement of the principle of virtual power	38
	2.1.1 Motion and virtual power	38
	2.1.2 Frames of reference and material derivatives	39
	2.1.3 Principle of virtual power	40
2.2	Method of virtual power	41
	2.2.1 Rates of strain and stress	41
	2.2.2 Equations of equilibrium	44
	2.2.3 Strains and displacements	45
	2.2.4 Tensorial representation: invariants	51
		v

2.3 F	undamental statements of thermodynamics	53
	3.1 Conservation laws; first principle	53
	3.2 Entropy; second principle	55
	lethod of local state	56
	4.1 State variables	57
2.	4.2 Thermodynamic potential, state laws	58
	4.3 Dissipation, complementary laws	60
	lements of heat	65
	5.1 Fourier's law	65
2	5.2 Heat equation	66
	ibliography	68
3 Identi	fication and rheological classification of real solids	69
	he global phenomenological method	70
3.2 E	lements of experimental techniques and identification	
р	rocess	72
3	2.1 Characteristic tests	72
	2.2 Experimental techniques	77
	2.3 Identification methods	88
	chematic representation of real behaviour	99
	.3.1 Analogical models	99
	.3.2 Rigid solid and perfect fluid	100
3	.3.4 Viscous fluid	101
-	.3.4 Elastic solids	101
3	.3.5 Plastic solids	103
	.3.6 Viscoplastic solids	105
3	.3.7 Characterization of work-hardening	108
3	.3.8 Ageing	114
	chematic representation of fracture	114
	.4.1 Fracture by damage of a volume element	115
	.4.2 Fracture by crack propagation in a structure	117
	chematic representation of friction	119
3	5.5.1 Coulomb model	119
3	3.5.2 Boundary layer model	119
I	Bibliography	120
	ar elasticity, thermoelasticity and viscoelasticity	121
	Elasticity	121
	1.1.1 Domain of validity and use	122
4	1.1.2 Formulation	122

Contents

4.1.3 Identification
4.1.4 Table of elastic pro
4.1.5 Concepts of the fini
4.2 Thermoelasticity
4.2.1 Formulation
4.2.2 Identification
4.2.3 Thermoelastic prop
4.3 Viscoelasticity
4.3.1 Domain of validity
4.3.2 Thermodynamic for
4.3.3 Functional formula
4.3.4 Viscoelastic propert
4.3.5 Elements of viscoela
Bibliography
5 Plasticity
5.1 Domain of validity and u
5.2 Phenomenological aspect
5.2.1 Uniaxial behaviour
5.2.2 Multiaxial plasticity
5.3 Formulation of general co
5.3.1 Partition hypothesis
5.3.2 Choice of thermody
5.3.3 Loading surface and
5.4 Particular flow laws
5.4.1 Different types of cr
5.4.2 Isotropic hardening
5.4.3 Linear kinematic ha
5.4.4 Flow rules under cy
5.4.5 Classification of diff
5.5 Proportional loading
5.5.1 Definition
5.5.2 Integrated Hencky-
strain
5.5.3 Existence theorem for
5.6 Elements of computationa
5.6.1 Structural analysis
5.6.2 Limit analysis
5.6.3 Approximate global
Bibliography

		Contents	vii
		4.1.3 Identification	128
		4.1.4 Table of elastic properties of common materials	131
		4.1.5 Concepts of the finite element method	132
	4.2	Thermoelasticity	137
		4.2.1 Formulation	137
		4.2.2 Identification	139
		4.2.3 Thermoelastic properties of common materials	144
	4.3	Viscoelasticity	144
		4.3.1 Domain of validity and use	144
		4.3.2 Thermodynamic formulation	145
		4.3.3 Functional formulation	150
		4.3.4 Viscoelastic properties of common materials	154
		4.3.5 Elements of viscoelastic analysis of structures	156
		Bibliography	160
5	Pla	sticity	161
	5.1	Domain of validity and use	161
	5.2	Phenomenological aspects	162
		5.2.1 Uniaxial behaviour	163
		5.2.2 Multiaxial plasticity criteria	176
	5.3	Formulation of general constitutive laws	186
		5.3.1 Partition hypothesis	186
		5.3.2 Choice of thermodynamic variables	187
		5.3.3 Loading surface and dissipation potential	189
	5.4	Particular flow laws	195
		5.4.1 Different types of criteria and flow laws	195
		5.4.2 Isotropic hardening rules	198
		5.4.3 Linear kinematic hardening rules	205
		5.4.4 Flow rules under cyclic or arbitrary loadings	212
		5.4.5 Classification of different models	240
	5.5	Proportional loading	240
		5.5.1 Definition	240
		5.5.2 Integrated Hencky-Mises law. Equivalent stress and	241
		strain	241
	52	5.5.3 Existence theorem for proportional loading	242 243
	J.0	Elements of computational methods in plasticity	243 244
		5.6.1 Structural analysis	244 249
		5.6.2 Limit analysis5.6.3 Approximate global method of uniform energy	249 251
		Bibliography	251 252
		biolography	232

6	Vis	coplasticity	253
	6.1	Domain of validity and use	254
		Phenomenological aspects	254
		6.2.1 Results derived from hardening tests	254
		6.2.2 Results derived from creep tests	257
		6.2.3 Results derived from relaxation tests	261
		6.2.4 Viscosity-hardening law	264
		6.2.5 Influence of temperature	268
		6.2.6 Results derived from cyclic tests	271
		6.2.7 Results derived from multiaxial tests	274
	6.3	General formulation of the constitutive equations	276
		6.3.1 Partition of strains	276
		6.3.2 Choice of thermodynamic variables	277
		6.3.3 Dissipation potential	278
	6.4	Particular constitutive equations	280
		6.4.1 Laws of perfect viscoplasticity	281
		6.4.2 Viscoplasticity laws with isotropic hardening	288
		6.4.3 Viscoplasticity law with kinematic hardening	308
		6.4.4 Modelling of particular effects	328
	6.5	Elements of the methods of viscoplastic structural analysis	340
		6.5.1 General scheme of viscoplastic analysis	340
		6.5.2 Methods of step by step linearization	343
		Bibliography	345
7	Da	mage mechanics	346
'		Domain of validity and use	347
		Phenomenological aspects	348
		7.2.1 Damage variable	349
		7.2.2 Effective stress	350
		7.2.3 Measurement of damage	352
		7.2.4 Elementary damage laws	363
		7.2.5 Multiaxial damage criteria	381
	7.3	Thermodynamic formulation	396
		7.3.1 Multiaxial representation of damage	396
		7.3.2 Theory of isotropic damage	399
		7.3.3 A nonisotropic damage theory	403
	7.4	Particular models	409
		7.4.1 Ductile plastic damage	409
		7.4.2 Creep damage	413

Contents

- 7.4.3 Fatigue damage
- 7.4.4 Interaction effects of
- 7.5 Deformation and damage
 - 7.5.1 Elasticity coupled with
 - 7.5.2 Plasticity coupled with
 - 7.5.3 Viscoplasticity couple
- 7.5 Prediction of crack initiation 7.6.1 Initial damage 7.6.2 Calculation of damage
- Bibliography

8 Crack mechanics

- 8.1 Domain of validity and us
- 8.2 Elements of analysis of cra 8.2.1 Initial cracks
 - 8.2.2 Elastic analysis
 - 8.2.3 Elastoplastic analyse
- 8.3 Phenomenological aspects 8.3.1 Variables governing
 - 8.3.2 Elementary experime
- 8.4 Thermodynamic formulation
 - 8.4.1 Choice of variables.
 - 8.4.2 Elastic strain energy
 - 8.4.3 The crack growth the
 - 8.4.4 Dissipation analysis
 - 8.4.5 Bifurcation criteria for media
 - 8.4.6 Three-dimensional c
- 8.5 Particular crack propagati
 - 8.5.1 Cracking by brittle fi
 - 8.5.2 Cracking by ductile
 - 8.5.3 Creep crack growth
 - 8.5.4 Fatigue crack growth
- 8.6 Elements of the crack ana approach
 - 8.6.1 Elastic analysis by fi media)
 - 8.6.2 Three-dimensional c
 - 8.6.3 Integration of the me

		Contents	ix
		7.4.3 Fatigue damage	418
		7.4.4 Interaction effects of fatigue and creep damage	427
	7.5	Deformation and damage coupling	435
		7.5.1 Elasticity coupled with damage	436
		7.5.2 Plasticity coupled with damage	436
		7.5.3 Viscoplasticity coupled with damage	440
•	7.5	Prediction of crack initiation in structures	442
		7.6.1 Initial damage	442
		7.6.2 Calculation of damage at critical points	443
		Bibliography	449
8 (Cra	nck mechanics	451
8	8.1	Domain of validity and use	452
1	8.2	Elements of analysis of cracked media	453
		8.2.1 Initial cracks	453
		8.2.2 Elastic analysis	454
		8.2.3 Elastoplastic analyses	468
8	8.3	Phenomenological aspects	474
		8.3.1 Variables governing crack behaviour	474
		8.3.2 Elementary experimental results	478
8	8.4	Thermodynamic formulation	487
		8.4.1 Choice of variables. Thermodynamic potential	488
		8.4.2 Elastic strain energy release rate	491
		8.4.3 The crack growth threshold variable	491
		8.4.4 Dissipation analysis	503
		8.4.5 Bifurcation criteria for crack propagation in plane	
		media	505
		8.4.6 Three-dimensional cracked structures	508
8	3.5	Particular crack propagation models	511
		8.5.1 Cracking by brittle fracture	512
		8.5.2 Cracking by ductile fracture	513
		8.5.3 Creep crack growth	515
_		8.5.4 Fatigue crack growth	516
8	3.6	Elements of the crack analysis of structures by the global	
		approach	520
		8.6.1 Elastic analysis by finite elements (two-dimensional	
		media)	520
		8.6.2 Three-dimensional cracked structures	528
		8.6.3 Integration of the models	533

:.

x Contents

Crack analysis by the local approach	535
8.7.1 Limits and inadequacies of the global fracture	
mechanics	535
8.7.2 Principles of the local approaches	538
8.7.3 Examples	542
Bibliography	549
	8.7.1 Limits and inadequacies of the global fracture mechanics8.7.2 Principles of the local approaches8.7.3 Examples

Index

550

FOREWORD TO F.

When my young colleagues, Jean invited me to write a few introd publication of their work *Mécaniqu* solids materials), I very willingly acc trust and friendship, even though on is made abundantly clear by the title the well-deserved fame of the author the attention of readers.

The originality, I would even s apparent only if we place it within during the last few decades. In fact, i developments it assimilates and in continuum mechanics and thermod methods which, starting with a few s great variety of phenomenological extremely varied behaviour of solid above all, takes advantage of the ob and empirical laws which generated imagination and perspicacity in gui Finally, it provides an inventory of observed at the microscopic, molecular events determining and explaining these phenomena cannot be exp formulas, they are mentioned, whe results and procedures.

To my mind, this triple heritage can development of continuum thermody