CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS

- The Big Picture 1.1 1 Objectives of This Chapter 3 1.2 3 1.3 Difference Between Liquids and Gases Force and Mass 1.4 4 4 The International System of Units (SI) 1.5 The U.S. Customary System 1.6 6 Consistent Units in an Equation 7 1.7 1.8 The Definition of Pressure 10 1.9 Compressibility 12 Density, Specific Weight, and Specific Gravity 1.10 17 Surface Tension 1.11 References 19 **Practice Problems** 19
 - Computer Programming Assignments 22

CHAPTER 2

VISCOSITY OF FLUIDS

- 2.1 The Big Picture 25
- 2.2 Objectives of This Chapter 26
- **2.3** Dynamic Viscosity 26
- 2.4 Kinematic Viscosity 28
- 2.5 Newtonian Fluids and Nonnewtonian Fluids 29
- 2.6 Variation of Viscosity with Temperature 30
- 2.7 Viscosity Measurement 31
- 2.8 SAE Viscosity Grades 36
- 2.9 ISO Viscosity Grades 39
- 2.10 Hydraulic Fluids for Fluid Power Systems 40 References 42 Practice Problems 42
 - Computer Programming Assignments 44

xi

25

1

CHAPTER 3 PRESSURE MEASUREMENT

- 3.1 The Big Picture 45
- 3.2 Objectives 46
- **3.3** Absolute and Gage Pressure 46
- 3.4 Relationship Between Pressure and Elevation 48
- **3.5** Development of the Pressure-Elevation Relation 51
- 3.6 Pascal's Paradox 54
- 3.7 Manometers 55
- 3.8 Barometers 60
- **3.9** Pressure Gages and Transducers 61
- **3.10** Pressure Transducers 63
- 3.11 Pressure Expressed as the Height of a Column of Liquid 65 References 66 Practice Problems 66

CHAPTER 4

4.1

FORCES DUE TO STATIC FLUIDS

- The Big Picture 75
- 4.2 Objectives 77
- 4.3 Gases Under Pressure 77
- 4.4 Horizontal Flat Surfaces Under Liquids 78
- 4.5 Rectangular Walls
- 4.6 Submerged Plane Areas—General 82
- 4.7 Development of the General Procedure for Forces on Submerged Plane Areas 86
- 4.8 Piezometric Head 88
- 4.9 Distribution of Force on a Submerged Curved Surface 89
- 4.10 Effect of a Pressure Above the Fluid Surface 95
- 4.11 Forces on a Curved Surface with Fluid Below It 95

79

4.12 Forces on Curved Surfaces with Fluid Above and Below 97
 Practice Problems 97
 Computer Programming Assignments 113

CHAPTER 5

BUOYANCY AND STABILITY

- 5.1 The Big Picture 115
- 5.2 Objectives 116
- 5.3 Buoyancy 117
- 5.4 Stability of Completely Submerged Bodies 125
- 5.5 Stability of Floating Bodies 126
- 5.6 Degree of Stability 131 Reference 133 Practice Problems 133
 - Computer Programming Assignments 143

75

CHAPTER 6 FLOW OF FLUIDS AND BERNOULLI'S EQUATION

- 6.1 The Big Picture 145
- 6.2 Objectives 147
- 6.3 Fluid Flow Rate and the Continuity Equation 147
- 6.4 Commercially Available Pipe and Tubing 151
- 6.5 Recommended Velocity of Flow in Pipe and Tubing 152
- 6.6 Flow in Noncircular Sections 156
- 6.7 Conservation of Energy—Bernoulli's Equation 157
- 6.8 Interpretation of Bernoulli's Equation 159
- 6.9 Restrictions on Bernoulli's Equation 161
- 6.10 Applications of Bernoulli's Equation 161
- **6.11** Torricelli's Theorem 171
- 6.12 Flow Due to a Falling Head 174 Reference 177 Practice Problems 177 Computer Programming Assignments 189

CHAPTER 7

GENERAL ENERGY EQUATION

191

221

- 7.1 The Big Picture 191
- 7.2 Objectives 193
- 7.3 Energy Losses and Additions 193
- 7.4 Nomenclature of Energy Losses and Additions 196
- **7.5** General Energy Equation 196
- 7.6 Power Required by Pumps 201
- 7.7 Power Delivered to Fluid Motors 205 Practice Problems 207

CHAPTER 8

REYNOLDS NUMBER, LAMINAR FLOW, AND TURBULENT FLOW

- 8.1 The Big Picture 221
- **8.2** Objectives 224
- **8.3** Reynolds Number 224
- 8.4 Critical Reynolds Numbers 225
- 8.5 Velocity Profiles 227
- 8.6 Hydraulic Radius for Noncircular Cross Sections 229
- 8.7 Reynolds Number for Closed, Noncircular Cross Sections 231
 References 232
 - Practice Problems 232

CHAPTER 9

ENERGY LOSSES DUE TO FRICTION

- 9.1 The Big Picture 239
- 9.2 Objectives 240
- 9.3 Darcy's Equation 240
- 9.4 Friction Loss in Laminar Flow 241
- 9.5 Friction Loss in Turbulent Flow 242
- 9.6 Equations for Friction Factor 250
- 9.7 Friction Loss in Noncircular Cross Sections
- **9.8** Velocity Profile for Turbulent Flow 252
- 9.9 Hazen-Williams Formula for Water Flow 255
- 9.10 Other Forms of the Hazen-Williams Formula 257
- 9.11 Nomograph for Solving Hazen-Williams Formula 257 References 259 Practice Problems 259 Computer Programming Assignments 267

CHAPTER 10

MINOR LOSSES

- **10.1** The Big Picture 269
- 10.2 Objectives 271
- 10.3 Resistance Coefficient 271
- **10.4** Sudden Enlargement 272
- 10.5 Exit Loss 275
- **10.6** Gradual Enlargement 275
- 10.7 Sudden Contraction 278
- 10.8 Gradual Contraction 280
- **10.9** Entrance Loss 283
- 10.10 Resistance Coefficients for Valves and Fittings 284
- **10.11** Application of Standard Valves 289
- 10.12 Pipe Bends 293
- 10.13 Pressure Drop in Fluid Power Valves 295
- 10.14 Flow Coefficients for Valves Using C_v 300 References 301 Practice Problems 301 Computer-Aided Analysis and Design Assignments 306

CHAPTER 11

SERIES PIPE LINE SYSTEMS

- 11.1 The Big Picture 307
- 11.2 Objectives 308
- 11.3 Class I Systems 308
- 11.4 Spreadsheet Aid for Class I Problems 314
- **11.5** Class II Systems 317
- **11.6**Class III Systems325References330Practice Problems330

251

	Computer Aided Analysis and Design Assignments	340
CHA PARA	PTER 12 ALLEL PIPE LINE SYSTEMS	
12.1 12.2 12.3 12.4	The Big Picture 341 Objectives 343 Systems with Two Branches 344 Systems with Three or More Branches—Networks References 360 Practice Problems 360 Computer Programming Assignments 364	351

CHAPTER 13

PUMP SELECTION AND APPLICATION

- **13.1** The Big Picture 365
- 13.2 Objectives 367
- **13.3** Parameters Involved in Pump Selection 368
- **13.4** Types of Pumps 368
- **13.5** Performance Data for Positive Displacement Pumps 377
- **13.6** Performance Data for Centrifugal Pumps 378
- **13.7** Affinity Laws for Centrifugal Pumps 379
- **13.8** Manufacturer's Data for Centrifugal Pumps 381
- **13.9** The Operating Point of a Pump and Pump Selection 390
- **13.10** Alternate System Operating Modes 396
- **13.11** Pump Selection and Specific Speed 397
- **13.12** Net Positive Suction Head 400
- **13.13** Suction Line Details 403
- **13.14** Discharge Line Details 404 References 405 Practice Problems 406
- Design Problems 408 Comprehensive Design Problem 411

CHAPTER 14

OPEN CHANNEL FLOW

- **14.1** The Big Picture 413
- **14.2** Objectives 414
- **14.3** Classification of Open Channel Flow 414
- 14.4 Hydraulic Radius and Reynolds Number in Open Channel Flow 417
- 14.5 Kinds of Open Channel Flow 417
- 14.6 Uniform Steady Flow in Open Channels 418
- **14.7** The Geometry of Typical Open Channels 423
- 14.8 The Most Efficient Shapes for Open Channels 426
- 14.9 Critical Flow and Specific Energy 427
- 14.10 Hydraulic Jump 429

413

341

References 43	2	
Practice Problems	432	
Computer Program	ming Assignments	434

CHAPTER 15

FLOW MEASUREMENT

- 15.1 The Big Picture 437
- **15.2** Objectives 438
- **15.3** Flowmeter Selection Factors 438
- **15.4** Variable Head Meters 440
- **15.5** Variable Area Meters 448
- **15.6** Turbine Flowmeter 449
- **15.7** Vortex Flowmeter 450
- **15.8** Magnetic Flowmeter 450
- **15.9** Ultrasonic Flowmeters 452
- **15.10** Positive Displacement Meters 452
- **15.11** Mass Flow Measurement 452
- **15.12** Velocity Probes 455
- **15.13** Computer-Based Data Acquisition and Processing 460
- **15.14** Open Channel Flow Measurement 462 References 464 Review Questions 465 Practice Problems 465
 - Computer Programming Assignments 466

CHAPTER 16

FORCES DUE TO FLUIDS IN MOTION

- 16.1 The Big Picture 467
- **16.2** Objectives 468
- 16.3 Force Equation 468
- **16.4** Impulse-Momentum Equation 469
- 16.5 Problem-Solving Method Using the Force Equations 469
- 16.6 Forces on Stationary Objects 470
- 16.7 Forces on Bends in Pipe Lines 473
- 16.8Forces on Moving Objects477Practice Problems478

CHAPTER 17

DRAG AND LIFT

- 17.1 The Big Picture 485
- **17.2** Objectives 486
- **17.3** Drag Force Equation 487
- 17.4 Pressure Drag 488
- 17.5 Drag Coefficient 489
- **17.6** Friction Drag on Spheres in Laminar Flow 495
- 17.7 Vehicle Drag 496
- 17.8 Compressibility Effects and Cavitation 498

485

 17.9 Lift and Drag on Airfoils 499 References 502 Practice Problems 502

CHAPTER 18

FANS, BLOWERS, COMPRESSORS, AND THE FLOW OF GASES

- **18.1** The Big Picture 507
- 18.2 Objectives 508
- **18.3** Gas Flow Rates and Pressures 508
- 18.4 Classification of Fans, Blowers, and Compressors 509
- 18.5 Flow of Compressed Air and Other Gases in Pipes 514
- 18.6 Flow of Air and Other Gases through Nozzles 521 References 529 Practice Problems 529 Computer Programming Assignments 531

CHAPTER 19

FLOW OF AIR IN DUCTS

- 19.1 The Big Picture 533
- **19.2** Objectives 535
- **19.3** Energy Losses in Ducts 535
- **19.4** Duct Design Example 540
- References 546 Practice Problems 546

APPENDIXES

- A Properties of Water 551
- **B** Properties of Common Liquids 553
- **C** Typical Properties of Petroleum Lubricating Oils 555
- **D** Variation of Viscosity with Temperature
- E Properties of Air 561
- **F** Dimensions of Steel Pipe 565
- G Dimensions of Steel Tubing 567
- H Dimensions of Type K Copper Tubing 569
- I Dimensions of Ductile Iron Pipe 571
- J Areas of Circles 573
- K Conversion Factors 575
- L Properties of Areas 579
- M Properties of Solids 581
- N Gas Constant, Adiabatic Exponent, and Critical Pressure Ratio for Selected Gases 583

ANSWERS TO SELECTED PROBLEMS 585 INDEX 591

557

507