Contents

CHAPTER I INTRODUCTORY KINETIC THEORY

1 Introduction, 1

teachers, measure

V. G. V.)

G. V. H. K.

- 2 Molecular Model, 2
- 3 Pressure, Temperature, and Internal Energy, 4
- 4 Mean Free Path, 12
- 5 Transport Phenomena, 15
- 6 Molecular Magnitudes, 23

CHAPTER II EQUILIBRIUM KINETIC THEORY

27

1

- 1 Introduction, 27
- 2 Velocity Distribution Function, 27
- 3 Equation of State for a Perfect Gas, 31
- 4 Maxwellian Distribution-Condition for Equilibrium, 35
- 5 Maxwellian Distribution—Final Results, 42
- 6 Collision Rate and Mean Free Path, 48
- 7 Chemical Equilibrium and the Law of Mass Action, 55

CHAPTER III CHEMICAL THERMODYNAMICS

59

- 1 Introduction, 59
- 2 Thermodynamic Systems and Kinds of Equilibrium, 60
- 3 Conservation of Mass, 63
- -4 Conservation of Energy; First Law, 65
- 5 The Second Law, 66
- 6 The Gibbs Equation for a Chemically Reacting System, 70
- 7 Entropy Production in Chemical Nonequilibrium; Condition for Reaction Equilibrium, 75
- 8 Mixtures of Perfect Gases, 77
- 9 Law of Mass Action, 82
- 10 Heat of Reaction; van't Hoff's Equation, 83

xiii

thtents .	
W STATISTICAL MECHANICS 86	6 Rate Equation for Dissociation-Recombin
Introduction, 86	7 Rate Equation for Complex Mixtures, 228
Macroscopic and Microscopic Descriptions, 88	8 High-Temperature Air. 229
Quantum Energy States, 89	9 Symmetrical Diatomic Gas. Ideal Dissoci
Enumeration of Microstates, 93	10 Generalized Rate Equation 234
Distribution over Energy States—General Case, 101	11 Local Relaxation Time: Small Departu
Distribution over Energy States—Limiting Case, 104	librium. 236
Relation to Thermodynamics; Boltzmann's Relation, 112	,
Thermodynamic Properties, 117	
Properties Associated with Translational Energy, 120	CHAPTER VIII FLOW WITH VIBRATIONAL OR CHEMIC
Contribution of Internal Structure, 126	NONEQUILIBRIUM
Monatomic Gases, 129	1 Introduction, 245
Diatomic Gases, 132	2 Basic Nonlinear Equations, 246
Chemically Reacting Systems and Law of Mass Action, 139	3 Equilibrium and Frozen Flow, 251
Dissociation-Recombination of Symmetrical	4 Acoustic Equations, 254
Diatomic Gas, 148	5 Frozen and Equilibrium Speeds of Sound
	6 Propagation of Plane Acoustic Wayes, 26
V EQUILIBRIUM GAS PROPERTIES 152	7 Equation for Small Departures from a
	Stream, 269
Introduction, 152	8 Flow over a Wavy Wall, 274
Symmetrical Diatomic Gas, 152	9 Linearized Flow behind a Normal Shock
Ideal Dissociating Gas, 157	10 Equations for Steady Quasi-One-Dimension
Ionization Equilibrium; The Saha Equation, 162	11 Nonlinear Flow behind a Normal Shock
Mixture of Gases, 165	12 Fully Dispersed Shock Wave, 292
Properties of Equilibrium Air, 171	13 Nozzle Flow, 293
	14 Method of Characteristics, 300
VI EQUILIBRIUM FLOW 178	15 Supersonic Flow over a Concave Corner,
	16 Supersonic Flow over a Convex Corner, 3
Introduction, 178	
Steady Shock Waves, 179	CHAPTER IX NONEOUILIBRIUM KINETIC THEORY
Steady Nozzle Flow, 183	CHAFTER IA NONEQUILIBRIUM RINETIC THEORY
Prandtl-Meyer Flow, 187	1 Introduction, 316
Frozen Flow, 191	2 The Conservation Equations of Gas Dyna
	3 The Boltzmann Equation, 328
VII VIBRATIONAL AND CHEMICAL RATE PROCESSES 197	4 Equilibrium and Entropy, 334
Inter duction 107	5 The Equations of Equilibrium Flow, 344
Vibrational Data Francisco 100	6 Moments of the Boltzmann Equation, 346
Fortrance Declaration, 198	7 Dynamics of a Binary Collision, 348
Chemical Pote Frontierer G	8 The Evaluation of Collision Cross-Section
Energy Involved in Collisions 216	9 The Evaluation of Collision Integrals, 361
Lifergy involved in Collisions, 216	10 Gas Mixtures, 368

	ž.		
		Contents	xv
86	6	Rate Equation for Dissociation-Recombination React	tions,
s, 88	7 8 9	Rate Equation for Complex Mixtures, 228 High-Temperature Air, 229 Symmetrical Diatomic Gas; Ideal Dissociating Gas. 2	232
	10	Generalized Rate Equation, 234	
Case, 101 Case, 104 's Relation, 112	11	Local Relaxation Time; Small Departures from 1 librium, 236	Equi-
nergy, 120	CHAPTER	VIII FLOW WITH VIBRATIONAL OR CHEMICAL NONEQUILIBRIUM	245
	1	Introduction 245	
·	2	Basic Nonlinear Equations 246	
lass Action, 139	3	Equilibrium and Frozen Flow 251	
l , a l	4	Acoustic Equations, 254	
	5	Frozen and Equilibrium Speeds of Sound 259	
	6	Propagation of Plane Acoustic Wayes, 261	
152	. 7	Equation for Small Departures from a Uniform	Free
1.52		Stream. 269	1100
:	8	Flow over a Wavy Wall, 274	
<u>.</u>	9	Linearized Flow behind a Normal Shock Wave, 281	
s	10	Equations for Steady Quasi-One-Dimensional Flow, 2	286
n , 162	11	Nonlinear Flow behind a Normal Shock Wave, 290	
	12	Fully Dispersed Shock Wave, 292	
	13	Nozzle Flow, 293	
;	14	Method of Characteristics, 300	
178	15	Supersonic Flow over a Concave Corner, 305	
	16	Supersonic Flow over a Convex Corner, 310	
	CHAPTER	IX NONEQUILIBRIUM KINETIC THEORY	316
	1	Introduction, 316	
	2	The Conservation Equations of Gas Dynamics. 317	
	3	The Boltzmann Equation, 328	
ROCESSES 197	4	Equilibrium and Entropy, 334	
	5	The Equations of Equilibrium Flow, 344	
	6	Moments of the Boltzmann Equation, 346	
1914 A	7	Dynamics of a Binary Collision, 348	
ulibrium, 206	8	The Evaluation of Collision Cross-Sections, 356	
lerations, 210	9	The Evaluation of Collision Integrals, 361	
	10	Gas Mixtures, 368	
	1. 2.		

	FLOW	WITH	TRANSLATIONAL	NONEOUILIBRIUM	-
--	------	------	---------------	----------------	---

375

introduction, 375 the Bhatnagar-Gross-Krook Collision Model, 376 The Chapman-Enskog Solution of the Krook Equation, 379 the Chapman-Enskog Solution of the Boltzmann Equation, 385 The Navier-Stokes Equations, 390 Expansion in Sonine Polynomials, 394 Transport Properties, 403 Bulk Viscosity, 407 The Structure of Shock Waves, 412 Linearized Couette Flow, 424 ER XI RADIATIVE TRANSFER IN GASES 436 Introduction, 436 2 Energy Transfer by Radiation, 437 3 The Equation of Radiative Transfer, 443

- 4 Radiative Equilibrium, 446
- 5 The Interaction of Radiation with Solid Surfaces, 450
- 6 Emission and Absorption of Radiation, 452 7
- Quasi-Equilibrium Hypothesis, 458
- 8 Formal Solution of the Equation of Radiative Transfer, 462
- 9 Simplifications and Approximations, 465

TER XII FLOW WITH RADIATIVE NONEQUILIBRIUM 473

- 1 Introduction, 473
- 2 Basic Nonlinear Equations, 474
- 3 Asymptotic Situations; Grey-Gas Approximation, 476
- 4 One-Dimensional Equations, 479
- 5 Linearized One-Dimensional Equations, 485
- 6 Differential Approximation, 491
- 7 Acoustic Equation, 496
- 8 Propagation of Plane Acoustic Waves, 499
- Equation for Small Departures from a Uniform Free 9 Stream, 505
- 10 Linearized Flow through a Normal Shock Wave, 508
- 11 Nonlinear Flow through a Normal Shock Wave, 515

APPENDIX

- 1 Definite Integrals, 523
- 2 Fundamental Physical Constar
- Physical Constants for Constitu 3

SUBJECT INDEX

SYMBOL INDEX

	Contents	s xvii	
375	APPENDIX	523	
379 ion	 Definite Integrals, 523 Fundamental Physical Constants, 524 Physical Constants for Constituents of Air, 524 		
,	SUBJECT INDEX	525	
	SYMBOL INDEX	535	
436			
1			ſ

462

473

Free