Contents

; |

1	Introduction and overview	1	
	1.1 What is soft condensed matter?	1	
	1.2 Soft matter-an overview	2	
2	Forces, energies, and timescales in condensed matter	5	
	2.1 Introduction	5	
	2.2 Gases, liquids, and solids	5	
	2.2.1 Intermolecular forces	5	
	2.2.2 Condensation and freezing	8	
	2.3 Viscous, elastic, and viscoelastic behaviour	10	
	2.3.1 The response of matter to a shear stress	10	
	2.3.2 Understanding the mechanical response of matter a	t a	
	molecular level	13	
	2.4 Liquids and glasses	16	
	2.4.1 Practical glass-forming systems	16	
	2.4.2 Relaxation time and viscosity in glass-forming liquic	ls 17	
	2.4.3 The experimental glass transition	IX	
	2.4.4 Understanding the glass transition	21	
2	Phase transitions	25	
3	31 Phase transitions in soft matter	25 25	
	3.2 Liquid-liquid unmixing-equilibrium phase diagrams	26	
	3.2 Interfaces between phases and interfacial tension	31	
	3.3 Liquid-liquid unmixing—kinetics of phase separation	32	
	3.3.1 Two mechanisms of phase separation	32	
	3.3.2 Spinodal decomposition	33	
	3.3.3 Nucleation	37	
	3.3.4 Growth in the late stages of phase separation	38	
	3.4 The liquid-solid transition-freezing and melting	41	
	3.4.1 Kinetics of the liquid-solid transition-homogeneous	ous	
	nucleation	42	
	3.4.2 Kinetics of the liquid-solid transition-heterogeneous	ous	
	nucleation	44	
	3.4.3 Solidification-stability of a growing solidification f	ront 45	
4 Colloidal dispersions 49			
	4.1 Introduction	49	
	4.2 A single colloidal particle in a liquid-Stokes' law and Brown	ian	
	motion	50	

- 4.2. I Stokes' law
- 4.2.2 Brownian motion and the Einstein equation
- 4.3 Forces between colloidal particles
 - 4.3.1 Interatomic forces and interparticle forces
 - 4.3.2 Van der Waals forces
 - 4.3.3 Electrostatic double-layer forces
 - 4.3.4 Stabilising polymers with grafted polymer layers
 - 4.3.5 Depletion interactions
- 4.4 Stability and phase behaviour of colloids
 - 4.4. I Crystallisation of hard-sphere colloids
 - 4.4.2 Colloids with longer ranged repulsion
 - 4.4.3 Colloids with weakly attractive interactions
 - 4.4.4 Colloids with strongly attractive interactions
- 4.5 Flow in concentrated dispersions

5 Polymers

- 5.1 Introduction
- 5.2 The variety of polymeric materials
 - 5.2.1 Polymer chemistry
 - 5.2.2 Stereochemistry
 - 5.2.3 Architecture
 - 5.2.4 Copolymers
 - 5.2.5 Physical state
- 5.3 Random walks and the dimensions of polymer chains
 - 5.3. I The freely jointed chain and its Gaussian limit
 - 5.3.2 Reel polymer chains--short-range correlations
 - 5.3.3 Excluded volume, the theta temperature, and coil-globule transitions
 - 5.3.4 Chain statistics in polymer melts-the Flory theorem
 - 5.3.5 Measuring the size of polymer chains
 - 5.3.6 Polymers at interfaces--adsorbed and grafted chains
- 5.4 Rubber elasticity
- 5.5 Viscoelasticity in polymers and the reptation model
 - 5.5.1 Characterising the viscoelastic behaviour of polymers
 - 55.2 Linear viscoelasticity and the Boltzmann superposition principle
 - 5.5.3 The temperature dependence of viscoelastic properties: time-temperature superposition
 - 5.5.4 Viscoelasticity: experimental results for monodisperse linear polymer melts
 - 5.5.5 Entanglements
 - 5.5.6 The tube model and the theory of reptation
 - 5.5.7 Modifications to reptation theory

6 Gelation

- 6. I Introduction
- 6.2 Classes of gel
 - 6.2.1 Chemical gels
 - 6.2.2 Physical gels

	6.3 The theory of gelation	97
	6.3.1 The percolation model	97
	6.3.2 The classical theory of gelation-the Flory-Stockmayer	
	model	98
	6.3.3 Non-classical exponents in the percolation model	100
	6.3.4 The elasticity of gels	100
7	Molecular order in soft condensed matter-liquid crystallinity	104
	1.1 Introduction	104
	1.2 Introduction to liquid crystal phases	105
	7.3 The nematic/isotropic transition	107
	7.4 Distortions and topological defects in liquid crystals	111
	7.4.1 Generalised rigidity and the elastic constants of anematic	
	liquid crystal	111
	7.4.2 Boundary effects	112
	7.4.3 Disclinations, dislocations, and other topological	
	defects	113
	7.5 The electrical and magnetic properties of liquid crystals	114
	7.6 The Frederiks transition and liquid crystal displays	116
	1.7 Polymer liquid crystals	118
	7.7.1 Rigid polymers	118
	7.7.2 Helix-coil transitions	118
	7.7.3 The isotropic/nematic transition for ideal hard rods	122
	7.7.4 Transitions in real lyotropic systems	126
	7.7.5 Thermotropic liquid crystal phases	126
8	Molecular order in soft condensed mattercrystallinity in	
	polymers	129
	8.1 Introduction	129
	8.2 Hierarchies of structure	129
	8.3 Chain-folded crystals	131
9	Supramolecular self-assembly in soft condensed matter	136
	9.1 Introduction	136
	9.2 Self-assembled phases in solutions of amphiphilic molecules	136
	9.2.1 Why oil and water do not mix	136
	9.2.2 Aggregation and phase separation	137
	9.2.3 The aggregation of amphiphilic molecules	139
	9.2.4 Spherical micelles and the CMC	142
	9.2.5 Cylindrical micelles	142
	9.2.6 Bilayers and vesicles	144
	9.2.7 The elasticity and fluctuations of membranes	145
	9.2.8 The phase behaviour of concentrated amphiphile	
	solutions	147
	9.2.9 Complex phases in surfactant solutions and	
	microemulsions	150
	9.3 Self-assembly in polymers	151
	9.3.1 Phase separation in polymer mixtures and the	1.50
	polymer/polymer interface	152

- 9.3.2 Microphase separation in copolymers
- 9.3.3 Block copolymer phase diagrams

10 Soft matter in nature

- IO. I Introduction
- 10.2 The components and structures of life
- 10.3 Nucleic acids
- 10.4 Proteins
 - 10.4.1 Primary, secondary, and tertiary structure of proteins
 - 10.4.2 Protein folding
 - 10.4.3 Interactions between proteins: misfolding, aggregation, and crystallisation
 - 10.4.4 Protein misfolding, gelation, and amyloidogenesis
- 10.5 Polysaccharides
- 10.6 Membranes

A Some results from statistical mechanics

- A. I Entropy and the second law of thermodynamics
- A.2 Energy, entropy, and temperature
- A.3 Free energy and the Gibbs function
- A.4 The chemical potential

B The distribution function of an ideal random walk

- B.1 Direct enumeration of the statistical weight
- 8.2 Random walks and the diffusion equation

C Answers to selected problems

C Answers to selected problems

- C. 1 Chapter 2
- C.2 Chapter 3
- C.3 Chapter 4
- C.4 Chapter 5
- C.5 Chapter 6
- C.6 Chapter 7
- C.7 Chapter 8
- C.8 Chapter 9
- C.Y Chapter 10

Bibliography

Index