CINTENTS

I	BASIC CONCEPTS	1
	1. Introduction	1
	2. Basic concepts	1
	3. The analysis in terms of riormal modes	3
	4. Non-dimensional numbers	6
	BIBLIOGRAPHICAL NOTES	7
11.	THE THERMAL INS'TABILITY OF A LAYER OF FLUID HEATED FROM BELOW	9
1.	THE BÉNARD PROBLEM	Ū
	5. Introduction	9
	6. The nature of the physical problem	9
	7. The basic hydrodynamic (equations	10
	(a) The equation of continuity	10
	(b) The equations of moti on	11
	(c) The rate of viscous di ssipation	13
	(d) The equation of heat (conduction	14
	.8. The Boussinesq approxim ation	16
	9. The perturbation equation	18
	(a) The boundary conditions	21
	10. The analysis into normal 1 modes	22
	(a) The solutions for the 1 horizontal components of the velocity	24
	11. The principle of the excha nge of stabilities	24
	12. The equations governing the marginal state and the reduction to	
	a characteristic value prot lem	26
	13. The variational principles	27
	(a) The first variational principle	27
	(b) The second variational principle	31
	14. The thermodynamic signif icance of the variational principle	32
	15. Exact solutions of the cha racteristic value problem	34
	(a) The solution for two fr ee boundaries	35
	(b) The solution for two ri rigid boundaries	36
	(i) The even solutions	37
	(ii) The odd solutions	39
	(c) The solution for one ri gid and one free boundary	42
	(d) Summary of the result s for the three cases	43
	16. The cell patterns	43
	(a) Rolls	44
	(b) Rectangular and squar re cells	44

CONTENTS	CO	N	ΤI	EN	T	S
----------	----	---	----	----	---	---

(c) Hexagonal cells	47
(d) Triangular cells	50
(e) More general cell patterns	61
17. The variational solution	63
18. Experiments on the onset of thermal instability in fluids	69
(a) Bénard's experiments	60
(b) The Schmid-Milverton principle for detecting the onset of thermal instability	61
(c) The precision experiments of Silveston	64
(d) Observations by optical methods	69
BIBLIOGRAPHICAL NOTES	71
III. THE THERMAL INSTABILITY OF A LAYER OF FLUID HEATED FROM BELOW	76
2. THE EFFECT OF ROTATION	
19. Introduction	76
20. The theorems of Helmholtz and Kelvin	76
21. The equations of hydrodynamics in a rotating frame of reference	80
22. The Taylor-Pro&man theorem	83
23. The propagation of waves in a rotating fluid	86
24. The problem of thermal instability in a rotating fluid: general	
considerations	87
26. The perturbation equations	87
(a) The analysis into normal modes	89
26. The case when instability sets in as stationary convection. A varia-	
tional principle	89
(a) A variational principle	91
27. Solutions for the case when instability sets in as stationary con- vection	94
(a) The solution for two free boundaries	94 94
(b) The solution for two rigid boundaries	94 97
(c) The solution for one rigid and one free boundary	101
(d) The origin of the $T^{\frac{1}{2}}$ -law	101
28. The motions in the horizontal planes and the cell patterns at the	104
onset of instability as stationary convection	106
(a) Rolls, rectangles, and squares	108
(b) Hexagons	111
(c) The limiting behaviour of the streamlines for $T \to \infty$	113
29. On the onaet of convection as over&ability. The solution for the case of two free boundaries	114
(a) The nature of the roots of the characteristic equation (216)	121
30. On a method of discriminating the character of the marginal state.	
A general variational principle	123
(a) The variational principle	124

31. The onset of convection as overstability: the solution for other	
boundary conditions	126
32. The case p =O	129
33. Thermodynamic significance of the variational principles	130
(a) The case when the marginal state is stationary	131
(b) The case when the marginal state is oscillatory	132
34. The case when Ω and g act in different directions	134
36. Experiments on the onset of thermal instability in rotating fluids	135
(a) Experiments with water	136
(b) Experiments with mercury	138
BIBLIOGRAPHICAL NOTES	143
IV. THE THERMAL INSTABILITY OF A LAYER OF	
FLUID HEATED FROM BELOW	146
3. THE EFFECT OF A MAGNETIC FIELD	
36. Hydromagnetics	146
37. The basic equations of hydromagnetics	146
38. The equation of motion governing the magnetic field and some of	
its consequences	148
(a) The decay of a magnetic field in the absence of fluid motions.	
The Joule dissipation	149
(b) The case when there are motions and the conductivity is infinite	161
(i) Conservation theorems	162
(ii) The transformation of magnetic energy into kinetic energy	
and conversely	163
(c) The general energy equation	164
39. The Alfvén waves	166
(a) The case when $\nu = \eta = 0$	166
(b) The effects of finite viscosity and resistivity	157
40. Some special solutions of the hydromagnetic equations. The	
analogue of the Taylor-Proudman theorem	167
(a) The equipartition solution	167
(b) Force-free fields	168
(c) The analogue of the Taylor-Proudman theorem	169
41. The problem of thermal instability in the presence of a magnetic	400
field: general considerations	169
42. The perturbation equations	160
(a) The boundary conditions	162
(b) The analysis into normal modes	163
(c) The solutions for the horizontal components of the velocity and	1/1
the magnetic field	164
43. The case when instability sets in as stationary convection. A varia- tional principle	166
(a) A variational principle	166
(b) The thermodynamic significance of the variational principle	101

xi

44. Solutions for the case when instability sets in as stationary convect	ion 169
(a) The solution for two free boundaries	170
(b) The solution for two rigid boundaries	172
(c) The solution for one rigid and one free boundary	176
(d) Cell patterns	176
46. The origin of the &?-law and an invariant	177
(o) An invariant	180
46. On the onset of convection as overstability	181
47. The case when H and 🛿 act in different directions	186
48. Experiments on the inhibition of thermal convection by a magnet field	ic 190
BIBLIOGRAPHICAL NOTES	193
V. THE THERMAL INSTABILITY OF A LAYER O FLUID HEATED FROM BELOW	F 196
4. THE EFFECT OF ROTATION AND MAGNETIC FIELD	
49. The like and the contrary effects of rotation and magnetic field fluid behaviour	on 196
50. The propagatin of hydromagnetic waves in a rotating fluid	197
51. The perturbation equations	198
52. The case when instability sets in as stationary convection	201
(a) The solution for the case of two free boundaries	202
53. The case when instability sets in as overstability	209
(a) An approximate solution applicable to liquid metals	210
(b) Numerical results for mercury	211
54. Experiments con the onset of thermal instability in the presence rotation and hagnetic field	of
(a) The results on the critical Rayleigh number and on the mann of the onset of instability	er 213
(b) Optical observations and the discontinuous variation of the c	ell
dimensions with the strength of the magnetic field	217
BIBLIOGRAPHICAL NOTES	219
VI. THE ONSET OF THERMAL INSTABILITY IN FLUI	
SPHERES AND SPHERICAL SHELLS	220
55. Introduction	220
56. The perturbation equations	220
(a) The operator L^2	222
(b) The analysis into normal modes	223
(c) Boundaryconditions(d) The velocity field	224 226
57. The validition the principle of the exchange of stabilities for the case $\beta = co_{stant}$ and $\gamma = constant$	ne 226
58. A variation principle for the case when β and γ are constants	229
(a) The the field variational principle	

CO	N	\mathbf{FE}	NΠ	rs
$\mathbf{v}\mathbf{v}$				

69.	On the onset of thermal instability in a fluid sphere	231
	(a) The cell patterns	234
60.	On the onset of thermal instability in spherical shells	237
	(i) Free surfaces at $r = 1$ and $r = \eta$	241
	(ii) A rigid surface at $r = \eta$, and a free surface at $r = 1$	241
	(iii) A free surface at $r = \eta$, and a rigid surface at $r = 1$	242
	(iv) Rigid surfaces at $r = 1$ and $r = \eta$	243
	(a) The case $b = c = 1$	243
	(b) The case $b(r) = 1$	247
	(c) The case $c(r) = 1$	260
61.	On the effect of rotation on the onset of thermal instability in a fluid	
	sphere. The formulation of the problem	261
	(a) The representation of an axisymmetric solenoidal vector field	262
•	(b) The perturbation equations	264
	(c) The boundary conditions	266
	(d) The variational principle	267
	(e) The thermodynamic significance of the variational principle	269
62.	The effect of rotation on the onset of stationary convection in a	
	fluid sphere	260
63.	Some remarks on geophysical applications	266
BIE	BLIOGRAPHICAL NOTES	268
	THE STABILITY OF COUETTE FLOW	272
	Introduction	272
66.	The physical problem	272
	Rayleigh's criterion	273
67.	Analytical discussion of the stability of inviscid Couettel flow	277
	(a) The equations in terms of the Lagrangian displacement	278
	(b) The case $m = 0$	280
	(c) The case <i>m</i> # O	281
68 .	The periods of oscillation of a rotating column of liquid	284
	(a) The case $\Omega = ext{constant}$	284
	(i) The case $\eta = 0$	286
	(ii) The case $m = 0$	287
	(b) The case $\Omega = A + B/r^2$ and $m = 0$	288
	(i) The solution for a narrow gap	288
	(ii) The formal solution for a wide gap	290
69.	On viscous Couette flow	292
70.	The perturbation equations	294
	(a) The stability of the flow for $\mu > \eta^2$	296
71.	The solution for the case of a <i>narrow</i> gap when the marginal state is	
	stationary	298
	(a) The solution of the characteristic value problem for the case	a a -
	$\sigma=0$	300

xiii

in.

(b) Numerical results	303
(c) An alternative method of solution	307
(d) An approximate solution for $\mu \rightarrow 1$	309
(e) The asymptotic behaviour for $(1-\mu) \rightarrow \infty$	313
72. On the principle of the exchange of stabilities	316
73. The solution for a wide gap when the marginal state is stationary	318
(a) The characteristic equation	319
(b) Numerical results for the case $\eta = \frac{1}{2}$	321
74. Experiments on the stability of viscous flow between rotating	
cylinders	324
(a) The determination of the critical Taylor numbers, for the case $\mu = 0$, by torque measurements	327
(i) Results of the experiments with the narrow gap	330
(ii) Results of the experiments with the wide gap $(\eta = \frac{1}{2})$	330
(b) The dependence of the critical Taylor number on Ω_2/Ω_1 . The	
results of visual and photographic observations	333
(i) Observations on the wave numbers of the disturbance manifested at marginal stability	336
(if) Comparison between the measured and the predicted	
(T_c,μ) -relations	337
BIBLIOGRAPHICAL NOTES	339

VIII. THE STABILITY OF MORE GENERAL FLOWS
BETWEEN COAXIAL CYLINDERS34376. Introduction34376. The stability of viscous flow in a curved channel343(a) The perturbation equations344(b) The solution of the characteristic value problem for the case346(c) Numerical results348

77.	The stability of viscous flow between rotating cylinders when a transverse pressure gradient is present	360
	(a) The perturbation equations for the case $(R_2 - R_1) \ll \frac{1}{2}(R_2 + R_1)$ (b) The solution of the characteristic value problem for the case $\sigma = 0$ and $\mu = 0$	361 362
		363
	(c) The physical interpretation of the results	
	(d) Comparison with experimental results	368
78.	The stability of inviscid flow between coaxial cylinders when an axial	
	pressure gradient is present	369
	(a) The case of a pure axial flow	361
	(b) The general case when rotation is also present	366

The general case when rotation is also present	500
(i) A variational principle for c	368
(ii) A variational principle for λ^{a}	369
(iii) The criterion for stability	369

	79. The stability of viscous flow between rotating coaxial cylinders	
	when an axial pressure gradient is present	371
	(a) The perturbation equations	372
	(b) The reduction to the case of a narrow gap	373
	(c) An approximate solution of the characteristic value problem	
	for the case $\mu > 0$	374
	(d) Comparison with experimental results	377
	BIBLIOGRAPHICAL NOTES	379
IX.		
	HYDROMAGNETICS	382
	80. The equations of hydromagnetics in cylindrical polar coordinates	382
	81. The stability of non-dissipative Couette flow when a magnetic field	
	parallel to the axis is present	384
	(a) The case $m = 0$	386
	(b) The case $m \neq 0$	389
	82. The periods of oscillation of a rotating column of liquid when a magnetic field is impressed in the direction of the axis	390
	(a) The case $\Omega = \text{constant}$	390
	(b) The case $m = 0$ and $\Omega = A + B/r^2$; the stabilizing effect of a	000
	magnetic field in case of narrow gaps	391
	83. The stability of non-dissipative Couette flow when a current flows	
	parallel to the axis	393
	(a)The case m=O	396
	(b) The case $m \neq 0$	396
	84. The stability of non-dissipative Couette flow when an axial and a	
	transverse magnetic field are present	396
	(a) The case $\Omega = 0$	397
	85. The stability of dissipative Couette flow in hydromagnetics. The	
	perturbation equations	398
	(a) The boundary conditions	400
	(b) The equations governing the marginal state when the onset of	
	instability is as a stationary secondary flow	401
	(c) The reduction to the case of a narrow gap	402
	86. The solution of the characteristic value problem for the case	
	$\mu > 0$	403
	(a) A variational principle	404
	(b) The solution of the characteristic value problem. The secular	
	determinant	406
	(c) The case of non-conducting walls	408
	(d) The case of conducting walls	410
	(e) Numerical results	411
	(f) The asymptotic behaviour for $Q \rightarrow \infty$	413
	87. The solution of the characteristic value problem in the general case	416
	(a) The case $\mu = -1$	417

.

	88.	The stability of dissipative flow in a curved channel in the presence of an axial magnetic field	
		(a) The equations governing the marginal state when the onset of	422
		· · ·	422
	89.	Experiments on the stability of viscous flow between rotating cylinders when an axial magnetic field is present	425
	BIF	SLIOGRAPHICAL NOTES	426
X.	TF	IE STABILITY OF SUPERPOSED FLUIDS: THE	
	-	RAYLEIGH-TAYLOR INSTABILITY	428
	90.	Introduction	428
	91.	. The character of the equilibrium of a stratified heterogeneous fluid. The perturbation equations	428
		(a) Allowance for surface tension at interfaces between fluids	430
	92.	The inviscid case	433
		(a) The case of two uniform fluids of constant density separated by a horizontal boundary	434
		(b) The case of exponentially varying density	435
	93	. A general variational principle	436
		(a) The variational principle	440
	94	. The case of two uniform viscous fluids separated by a horizontal boundary	441
		(a) The case $\nu_1 = \nu_2$	443
		(b) The modes of maximum instability for the case $\nu_1 = \nu_2$, $\rho_2 > \rho_1$, and $S = 0$	444
		(c) The effect of surface tension on the unstable modes for $\nu_1 = \nu_2$ and $\rho_2 > \rho_1$	447
		(d) The manner of decay in the case $\nu_1 = \nu_2, \rho_2 < \rho_1$, and $S = 0$	448
		(e) Gravity waves	451
	95	5. The effect of rotation	453
		(a) The case of two uniform fluids separated by a horizontal boundary	455
		(b) The case of exponentially varying density	456
	96	b. The effect of a vertical magnetic field	457
		(a) Two uniform fluids separated by a horizontal boundary: the unstable case	459
		(b) Two uniform fluids separated by a horizontal boundary: the stable case	463
		7. The effect of a horizontal magnetic field	464
	9	8. The oscillations of a viscous liquid globe	466
		(a) The perturbation equations and their solution	467
		(i) The solution for the inviscid case: the Kelvin modes	468
		(ii) The solution for the general case	469
		(b) The boundary conditions and the characteristic equation	470
		(c) The manner of decay of the Kelvin modes. Numerical results	472

CONTENTS	xvii
99. The oscillations of a viscous liquid drop	475
(a) The solution for the inviscid case	475
(b) The solution for the general case	476
BIBLIOGRAPHICAL NOTES	477
XI. THE STABILITY OF SUPERPOSED FLUIDS: THE	
KELVIN-HELMHOLTZ INSTABILITY	481
100. The perturbation equations	481
101. The case of two uniform fluids in relative horizontal motion separated by a horizontal boundary	483
(a) The case when surface tension is absent	484
(b) The stabilizing effect of surface tension	485
102. The effect of a continuous variation of <i>U</i> on the development of the Kelvin-Helmholtz instability	487
103. The Kelvin-Helmholta instability in a fluid in which both p and U are continuously variable	491
(a) Analytical results for the case $\rho = \rho_0 e^{-\beta z}$ and $U = U_0 z/d$	492
104. An example of the instability of a shear layer in an unbounded	
heterogeneous inviscid fluid	494
105. The effect of rotation	498
(a) The case of two uniform fluids in relative horizontal motion separated by a horizontal boundary	499
(b) The discussion of the characteristic equation	501
106. The effect of a horizontal magnetic field	607
(a) The effect of a magnetic field in the direction of streaming	608
(i) The case of two uniform fluids in relative horizontal motion separated by a horizontal boundary	510
(b) The effect of a magnetic field transverse to the direction of	
streaming	511
BIBLIOGRAPHICAL NOTES	612
XII. THE STABILITY OF JETS AND CYLINDERS	615
107. Introduction	515
108. The gravitational instability of an infinite cylinder	616
(a) The origin of the gravitational instability and an alternative method of determining the characteristic frequencies	520
109. The effect of viscosity on the gravitational instability of an infinite cylinder	523
(a) The case when the effects of viscosity are dominant	527
(b) The general case	529
110. The effect of a uniform axial magnetic field on the gravitational	0.00
instability of an infinite cylinder	531
(a) The nature of the stabilizing effect of the axial magnetic field	534
111. The capillary instability of a liquid jet	637
(a) The origin of the capillary instability	539

(b) The capillary instability of a hollow jet	539	
(c) The effect of viscosity	540	
112. The effect of a uniform axial magnetic field on the capillary in-		
stability of a liquid jet	542	
(a) The effect of finite electrical conductivity	545	
(b) The cas of high resistivity	549	
(c) The general case	551	
113. The stability of the simplest solution of the equations of hydro-		
magnetics	55	1
(a) An example	554	
114. The effect of fluid motions on the stability of helical magnetic fields	556	
(a) The case f=0	560	
(b) The case $f=1$	562	
(c) The general case	563	
115. The stability of the pinch	565	
(a) On stable pinch configurations	569	
BIBLIOGAPHICAL NOTES	574	
XIII. GRAVITATIONAL EQUILIBRIUM AND	•	
GRAVITATIONAL INSTABILITY	577	
116. Introduction	577	
117. The virial theorem	577	
(a) Some definitions and relations	577	
(b) The general form of the virial theorem	579	
(c) The virial theorem for equilibrium configurations	581	
118. The virial theorem for small oscillations about equilibrium	583	
(a) A characteristic equation for determining the periods of oscilla-		
tion	586	
119. The gravitational instability of an infinite homogeneous medium;		
Jeans's criterion	588	
120. The effect of uniform rotation and a uniform magnetic field on		
Jeans's criterion	589	
(a) The effect of a uniform rotation	589	
(b) The effect of a uniform magnetic field	591	
(c) The effect of the simultaneous presence of rotation and magnetic		
field	594	
BIBLIOGRAPHICAL NOTES	596	
XIV. A GENERAL VARIATIONAL PRINCIPLE	599	
121. Introduction	599	
122. A variational principle for treating the stability of hydromagnetic		
systems	599	
(a) The effect of viscosity	603	
123. Extension of the variational principle to allow for compressibility	605	
BIBLIOCRAPHICAL NOTES	608	

APPENDIX I. INTEGRAL RELATIONS GOVERNING STEADY	
CONVECTION	609
124. Introduction	609
125. The integral relations	609
(a) The integral relations	611
126. The amplitude of the steady convection past marginal stability	612
BIBLIOGRAPHICAL NOTES	615
APPENDIX II. THE VARIATIONAL FORMULATION OF THE	
Problem Considered in Chapter V	617
127. The general equation governing the energy-balance	617
BIBLIOGRAPHICAL NOTE	621
APPENDIX III. Toroidal and Poloidal Vector Fields	622
128. A general characterization of solenoidal vector fields. The funda-	(22
mental basis	622
129. The orthogonality properties of the basic toroidal and poloidal fields	623
BIBLIOGRAPHICAL NOTES	625
DIDUIOGRAFIIICAL NOIED	020
APPENDIX IV. VARIATIONAL METHODS BASED ON ADJOINT	
DIFFERENTIAL SYSTEMS	627
130. Adjointness of differential systems. An example	627
131. The dual relationship and the variational principle	629
BIBLIOGRAPHICAL NOTES	633
APPENDIX~V. OrthoGonal Functions which satisfy Four	
BOUNDARY CONDITIONS	634
132. Introduction	634
133. Functions suitable for problems with plane boundaries	634
(a) Integrals involving $C_n(x)$ and $S_m(x)$	636
134. Functions suitable for problems with cylindrical and spherical boundaries	637
	638
(a) The normalization integral(b) The cylinder functions of order II	
	640
(c) The spherical functions of half-odd integral orders	640
BIBLIOGRAPHICAL NOTES	642
SUBJECT INDEX	645
INDEX OF DEFINITIONS	653

xix