Contents

Prefa	ace	page xvii
Part	t A: The Fundamentals of MHD	1
Intro	oduction: The Aims of Part A	1
1	A Qualitative Overview of MHD	3
1.1	What is MHD?	3
1.2	A Brief History of MHD	6
1.3	From Electrodynamics to MHD: A Simple Experiment	8
	1.3.1 Some important parameters in electrodynamics	
	and MHD	8
	1.3.2 A brief reminder of the laws of electrodynamics	9
	1.3.3 A familiar high-school experiment	11
	1.3.4 A summary of the key results for MHD	18
1.4	Some Simple Applications of MHD	18
2	The Governing Equations of Electrodynamics	27
2.1	The Electric Field and the Lorentz Force	27
2.2	Ohm's Law and the Volumetric Lorentz Force	29
2.3	Ampere's Law	31
2.4	Faraday's Law in Differential Form	32
2.5	The Reduced Form of Maxwell's Equations for MHD	34
2.6	A Transport Equation for B	37
2.7	On the Remarkable Nature of Faraday and of	
	Faraday's Law	37
	2.7.1 An historical footnote	37
	2.7.2 An important kinematic equation	40

	2.7.3	The full significance of Faraday's law	42
	2.7.4	Faraday's law in ideal conductors: Alfvén's theorem	44
2			47
3 D	The Go	verning Equations of Fluid Mechanics	47
Part	1: Fluid	Flow in the Absence of Lorentz Forces	47
3.1	Element	ary Concepts	47
	3.1.1	Different categories of fluid flow	47
	3.1.2	The Navier-Stokes equation	59
3.2	Vortici	ty, Angular Momentum and the Biot-Savart Law	61
3.3	Advect	ion and Diffusion of Vorticity	64
	3.3.1	The vorticity equation	64
	3.3.2	Advection and diffusion of vorticity: temperature	
		as a prototype	66
	3.3.3	Vortex line stretching	70
3.4	Kelvin'	's Theorem, Helmholtz's Laws and Helicity	71
	3.4.1	Kelvin's Theorem and Helmholtz's Laws	71
	3.4.2	Helicity	74
3.5	The Pra	andtl-Batchelor Theorem	77,
3.6	Bounda	ary Layers, Reynolds Stresses and Turbulence Models	81
	3.6.1	Boundary layers	81
	3.6.2	Reynolds stresses and turbulence models	83
3.7	Ekman	Pumping in Rotating Flows	90
Par	t 2: Incor	porating the Lorentz Force	95
3.8	The Fu	Ill Equations of MHD and Key Dimensionless	
	Groups	5	95
3.9	Maxwe	ll Stresses	97
4	Vinom	otics of MID: Advection and Diffusion	
4	of o M	aucs of MHD: Advection and Diffusion	102
		agnetic Field	102
4.1	The A	nalogy to Vorticity	102
4.2	Diffusi	ion of a Magnetic Field	103
4.3	Advect	tion in Ideal Conductors: Alfven's Theorem	104
	4.3.1	Alfvén's theorem	104
	4.3.2	An aside: sunspots	106
4.4	Magne	tic Helicity	108
4.5	Advec	tion plus Diffusion	109
	4.5.1	Field sweeping	109
	4.5.2	Flux expulsion	110

		Contents	xi
	4.5.3 4.5.4	Azimuthal field generation by differential rotation Magnetic reconnection	114 115
5	Dynami	ics at Low Magnetic Reynolds Numbers	117
5.1	The Lo	w-R,,, Approximation in MHD	118
Par	t 1: Supp	ression of Motion	119
5.2	Magneti	c Damping	119
	5.2.1	The destruction of mechanical energy via	
		Joule dissipation	120
	5.2.2	The damping of a two-dimensional jet	121
	5.2.3	Damping of a vortex	122
5.3	A Glim	pse at MHD Turbulence	128
5.4	Natural	Convection in the Presence of a Magnetic Field	132
	5.4.1	Rayleigh-Bénard convection	132
	5.4.2	The governing equations	133
	5.4.3	An energy analysis of the Rayleigh-Bénard	
		instability I	134
	5.4.4	Natural convection in other configurations	137
Par	t 2: Gene	ration of Motion	139
5.5	Rotatin	g Fields and Swirling Motions	139
	5.5.1	Stirring of a long column of metal	139
	5.5.2	Swirling flow induced between two parallel plates	142
5.6	Motion	Driven by Current Injection	145
	5.6.1	A model problem	145
	5.6.2	A useful energy equation	146
	5.6.3	Estimates of the induced velocity	148
	5.6.4	A paradox	149
Par	t 3: Bour	ndary Layers	151
5.7	Hartma	nn Boundary Layers	151
	5.7.1	The Hartmann Layer	151
	5.7.2	Hartmann flow between two planes	152
5.8	Examp	les of Hartmann and Related Flows	154
	5.8.1	Flow-meters and MHD generators	154
	5.8.2	Pumps, propulsion and projectiles	155
5.9	Conclu	sion	157

6	Dynamics at Moderate to High Magnetic Reynolds' Number	159
6.1	Alfvén Waves and Magnetostrophic Waves	160
	6.1.1 Alfvtn waves	160
	6.1.2 Magnetostrophic waves	163
6.2	Elements of Geo-Dynamo Theory	166
	6.2.1 Why do we need a dynamo theory for the earth?	166
	6.2.2 A large magnetic Reynolds number is needed	171
	6.2.3 An axisymmetric dynamo is not possible	174
	6.2.4 The influence of small-scale turbulence: the a-effect	177
	6.2.5 Some elementary dynamical considerations	185
	6.2.6 Competing kinematic theories for the geo-dynamo	197
6.3	A Qualitative Discussion of Solar MHD	199
	6.3.1 The structure of the sun	200
	6.3.2 Is there a solar dynamo?	201
	6.3.3 Sunspots and the solar cycle	201
	6.3.4 The location of the solar dynamo	203
	0.3.3 Solar mares	203
6.4	Energy-Based Stability Theorems for Ideal MHD	206
	6.4.1 The need for stability theorems in ideal MHD:	207
		207
	6.4.2 The energy method for magnetostatic equilibria	208
	6.4.3 An alternative method for magnetostatic equilibrium	1 213
	6.4.4 Proof that the energy method provides both necessar	y 215
	6.4.5 The stability of non-static equilibria	215
6.5	Conclusion	210
0.0		220
_		
7	MHD Turbulence at Low and High Magnetic	222
	Reynolds Number	LLL
7.1	A Survey of Conventional Turbulence	223
	7.1.1 A historical interlude	223
	7.1.2 A note on tensor notation	227
	7.1.3 The structure of turbulent flows: the Kolmogorov	
	picture of turbulence	229
	7.1.4 Velocity correlation functions and the Karman-	
	Howarth equation	235

٩,

xii

	7.1.5	Decaying turbulence: Kolmogorov's law,	
		Loitsyansky's integral, Landau's angular momentum	
		and Batchelor's pressure forces	240
	7.1.6	On the difficulties of direct numerical simulations	247
7.2	MHD	Turbulence	249
	7.2.1	The growth of anisotropy at low and high R_m	249
	7.2.2	Decay laws at low R_m	252
	7.2.3	The spontaneous growth of a magnetic field at	
		high R_m	256
7.3	Two-D	vimensional Turbulence	260
	7.3.1	Batchelor's self-similar spectrum and the inverse	
		energy cascade	260
	7.3.2	Coherent vortices	263
	7.3.3	The governing equations of two-dimensional	
	724	turbulence	264
	1.3.4	Variational principles for predicting the final state	0.07
		in confined domains	267
Par	t B: App	plications in Engineering and Metallurgy	273
Intr	oduction	n: An Overview of Metallurgical Applications	273
8	Magn	etic Stirring Using Rotating Fields	285
8.1	Castin	g, Stirring and Metallurgy	285
8.2	Early	Models of Stirring	289
8.3	The D	Oominance of Ekman Pumping in the Stirring	
	of Co	nfined Liquids	294
8.4	The S	tirring of Steel	298
9	Magn	etic Damping Using Static Fields	301
9.1	Metal	lurgical Applications	301
9.2	Conse	ervation of Momentum, Destruction of Energy	
	and th	e Growth of Anisotropy	304
9.3	Magn	etic Damping of Submerged Jets	308
9.4	Magn	etic Damping of Vortices	312
	9.4.1	General considerations	312
	9.4.2	Damping of transverse vortices	314
	9.4.3	Damping of parallel vortices	317
	9.4.4	Implications for low-R,,, turbulence	323
9.5	Damr	ing of Natural Convection	324

C	0.10 +	a
U	me	enis

	9.5.1 9.5.2	Natural convection in an aluminium ingot Magnetic damping in an aluminium ingot	324 329
10	Axisym	metric Flows Driven by the Injection	
	of Curr	ent	332
10.1	The VA	AR Process and a Model Problem	332
	10.1.1	The VAR process	332
	10.1.2	Integral constraints on the flow	336
10.2	The Wo	ork Done by the Lorentz Force	338
10.3	Structur	re and Scaling of the Flow	340
	10.3.1	Differences between confined and unconfined flows	340
	10.3.2	Shercliff's self-similar solution for unconfined flows	342
	10.3.3	Confined flows	3 4
10.4	The Inf	luence of Buoyancy	346
10.5	Stabilit	y of the Flow and the Apparent Growth of Swirl	348
	10.5.1	An extraordinary experiment	348
	10.5.2	There is no spontaneous growth of swirl!	350
10.6	Flaws i	in the Traditional Explanation for the Emergence	
	of Swir	1	351
10.7	The Rô	le of Ekman Pumping in Establishing the Dominance	
	of Swir	1	353
	10.7.1	A glimpse at the mechanisms	353
	10.7.2	A formal analysis	356
	10.7.3	Some numerical experiments	358
11	MHD I	instabilities in Reduction Cells	363
11.1	Interfac	cial Waves in Aluminium Reduction Cells	363
	11.1.1	Early attempts to produce aluminium by electrolysis	363
	11.1.2	The instability of modern reduction cells	364
11.2	A Sim	ble Mechanical Analogue for the Instability	368
11.3	Simplif	ying Assumptions	372
11.4	A Shal	low-Water Wave Equation and Key Dimensionless	
	Groups	5	374
	11.4.1	A shallow-water wave equation	374
	11.4.2	Key dimensionless groups	378
11.5	Travell	ing Wave and Standing Wave Instabilities	379
	11.5.1	Travelling waves	379
	11.5.2	Standing waves in circular domains	380
	11.5.3	Standing waves in rectangular domains	381

4

ł

xiv

Contents	XV
11.6 Implications for Reduction Cell Design	385
12 High-Frequency Fields: Magnetic Levitation	
and Induction Heating	387
12.1 The Skin Effect	388
12.2 Magnetic Pressure, Induction Heating and High-	200
Frequency Stirring	390
12.5 Applications in the Casting of Steel, Aluminium and	204
12.3.1 The induction furnace	394
12.3.2 The cold crucible	394
12.3.2 The cold chuchole	398
12.3.4 Processes which rely on magnetic repulsion	EM
valves and EM casters	403
Appendices	
1 Vector Identities and Theorems	405
2 Stability Criteria for Ideal MHD Based on the Hamilto	onian 407
3 Physical Properties of Liquid Metals	417
4 MHD Turbulence at Low R_m	418
Ribliography	422
Dibilographiy	422
Suggested Books on Fluid Mechanics	422
Suggested Books on Electromagnetism	422
Suggested Books on MHD	423
Journal References for Part B and Appendix 2	423
Subject Index	427