..... Contents

Foreword by Edward Witten

	Preface	XV
1	WHERE DO WE COME FROM? WHAT ARE WE? WHERE ARE WE GOING?	1
	To understand nature we need to know about particles, forces, and rules • Research in progress (RIP) • Equations? • Prediciton, postdiction, and testing • Where are the superpartners? • The boundaries of science have moved	
2	THE STANDARD MODEL OF PARTICLE PHYSICS	16
	The forces • Mass, decays, and quanta • The particles: Do we really know the fundamental constituents of matter? • Particles and fields • There are more particles • New ideas and remarkable predictions of the Standard Model • Experimental foundations of the Standard Model • Picturing Standard Model processes: Feynman diagrams • Spin, fermions, and bosons • Beyond the Standard Model	
3	WHY PHYSICS IS THE EASIEST SCIENCE— EFFECTIVE THEORIES	40
	Organizing effective theories by distance scales • Supersymmetry is an effective theory too •	

χi

The physics of the Planck scale • Effective theories replace renormalization • The human scales

4	SUPERSYMMETRY AND SPARTICLES	53
	What is supersymmetry? • Some mysteries supersymmetry would solve • The superpartners • Supersymmetry as a spacetime symmetry: superspace • Hidden or "broken" supersymmetry	
5	TESTING SUPERSYMMETRY EXPERIMENTALLY	72
	Detectors and colliders • Recognizing superpartners • Spartides: their personalities, backgrounds, and signatures at LEP and Fermilab • Visit Fermilab • Future colliders • Can we do the experiments we need to do?	
6	W HAT IS THE UNIVERSE MADE OF?	98
	What particles are there in the universe? • Is the lightest superpartner the cold dark matter of the universe?	
7	Higgs physics	108
	Finding Higgs bosons • Current evidence • LEP, Fermilab, and LHC • Studying Higgs bosons at Fermilab	
8	Some additional HeLP FROM SUPERSYMMETRY, AND SOME CHALLENGES	117

Matter and antimatter asymmetry • Proton decay? • Rare decays • CP violation • Inflation • Perspectives

and concerns

9	SUPERSYMMETRY, STRING THEORY, AND THE PRIMARY THEORY	130
	String theory and M-theory • Broken or hidden supersymmetry • The role of data • Effective theories and the primary theory	
10	CAN WE REALLY UNDERSTAND THE ORIGIN OF THE UNIVERSE AND ITS NATURAL LAW(S)?	136
	Testing string theory and the primary theory • Practical limits? • Anthropic questions and supersymmetry • The end of science?	
Appendices		149
	 A. The Standard Model Higgs mechanism, 749 B. The supersymmetry explanation of the Higgs mechanism, 7 53 C. Charginos and neutralinos, 157 D. Extra dimensions — large extra dimensions? 1 59 	organi
	ne Recommended Reading ssary Symbols, 7 65	163 165
Inde	Acronyms and Abbreviations, 166 Terms, 166 ex	195