Contents

1	The ph	ysic	s of fluids	1
	1.1 Tł	ne liq	uid state	1
	1	.1.1	The different states of matter: model systems and real media	2
			1 .1.1.1 The visual representation of different states of matter	
			by means of an air table	2
			1.1.1.2 Numerical simulations in terms of a hard-disc model	4
			1.1.1.3 Three-dimensional models	5
	ŕ	1.1.2	The solid-liquid transition: a sometimes nebulous process	7
			1.1.2.1 Modelling plastid flow in two dimensions	7
			1.1.2.2 The effect of the rate of change of the stresses on the	
			deformation of a medium	8
	1.2 ľ	Macr	oscopic transport coefficients	8
		1.2.1	Thermal conductivity	9
			1.2.1.1 A definition of thermal conductivity: the equation for	
			heat under stationary conditions	9
			1.2.1.2 Application of the thermal conductivity equation to a	
			cylindrical geometry	11
			1.2.1.3 Thermal exchanges under non-stationary	
			conditions) the Fourierequation	12
			1.2.1.4 Application to the one-dimensional propagation of	
			temperature variations	14
			1.2.1.5 Transient heat diffusion in a cylindrical geometry	17
			1.2.1.6 Propagation: diffusion versus wave motion	18
		1.2.2	2 Mass diffusion	18
			1.2.2.1 Conservation of mass for a diffusing substance	18
			1.2.2.2 The spreading of a tracer initially localized in a plane	19
	1.3	Micro	oscopic models for transport coefficients	21
		1.3.1	A different approach to mass diffusion: the random walk	21
		1.3.2	Transport coefficients for an ideal gas	24
			1.3.2.1 The representative elementary volume	24
			1.3.2.2 The calculation of the moleculardiffusion	
			coefficient for an ideal gas	24
			1.3.2.3 The calculation of thermal diffusivity for an ideal gas	27
			1.3.2.4 The applicability of the ideal gas model	28
		1.3.3	Diffusive transport phenomena in liquids	28
			1.3.3.1 The molecular diffusion coefficient for liquids	29

			1.3.3.2 The thermal conductivity of liquids	30
			1.3.3.3 A comparison of the numerical values of diffusive	
			transport coefficients in different liquids and gases	31
	1.4	Surfac	ce and surface tension effects	31
		1.4.1	Surface tension	31
		1.4.2	The pressure difference between the two sides of a	
			curved interface: Laplace's law	32
		1.4.3	Variations in the surface tension due to a surfactant	35
		1.4.4	The Rayleigh-Taylor instability	37
	1.5	The s	spectroscopy of liquids	40
		1.5.1	Some common techniques for probing	
			the microscopic structure of liquids	40
			1.5.1.1 Macroscopic properties and microscopic probes	40
			1.5.1.2 Characteristic orders of magnitude for	
			standard probe techniques	41
		1.5.2	The form factor and elastic X-ray diffraction: an example of	
			the use of scattering on an atomic scale	42
			1.5.2.1 The radial distribution function for a liquid	42
			1.5.2.2 The relation between the radial distribution function and	
			angular variations observed in the scattering amplitude	43
			1.5.2.3 Inelastic scattering	45
		1.5.3	Elastic and quasi-elastic scattering of light: a tool for the	
			study of the structure and diffusive transport in liquids	46
			1.5.3.1 A simple example of the elastic scattering of light:	
			Rayleigh scattering by a dilute emulsion	46
			153.2 Forced Rayleigh scattering: an example of diffraction	
			due to fluctuations in temperature or concentration	47
			1.5.3.3 Spontaneous Rayleigh scattering of visible light	51
		1.5.4	Inelastic scattering of light in liquids	52
			1.5.4.1 An illustration of inelastic Doppler scattering:	
			forced Brillouin scattering	52
			1.5.4.2 Spontaneous Brillouin scattering	54
	Appe		typical orders of magnitude for a number of physical parameters	
			characteristic of the interfacial properties of ordinary liquids	55
2	The		ion of momentum under various flow conditions	57
	2.1.	Diffus	sive and convective momentum transport in flowing fluids	57
		2.1.1	Diffusion and convection of momentum:	
			two illustrative experiments	57
		2.1.2		
			the concept of viscosity	59
			2.1.2.1 A macroscopic definition of viscosity	59
			2.1.2.2 The diffusion equation for momentum	61
			2.1.2.3 Application to a specific example: flow near a solid wall	
			suddenly set in motion parallel to its own plane	62

	2.2.	Micros	copic models of viscosity	64
		2.2.1	The viscosity of gases	64
		2.2.2	The viscosity of liquids	67
		2.2.3	Numerical simulation of the particle trajectories in a flowing fluid	69
	2.3	A com	parison of diffusion and convection mechanisms	71
		2.3.1	The Reynolds number	71
		2.3.2	Convective and diffusive mass and heat transport	73
			2.3.2.1 Mass transport	73
			2.3.2.2 Heat transport	74
	2.4	The de	escription of different flow regimes	76
		2.4.1	Different flow regimes in the wake of a cylinder	77
		2.4.2	Transitions in the shedding of vortices behind a cylinder:	
			the Landau model	79
			2.4.2.1 A simple experimental model of a mechanical instability	79
			2.4.2.2 Flow in the neighbourhood of the vortex-generation threshold	62
			2.4.2.3 A description of the Landau model	63
			2.4.2.4 Oscillation regimes at large Reynolds numbers:	
			the transition towards turbulence-large-scale	
			structures in turbulent flows	87
	-		<i>a</i> (n))	
:3			tics of fluids	89
	3.1		scription of motion of a fluid	89
		3.1.1	Characteristic linear scales and the hypothesis of continuity	89
		3.1.2	5 5 1	90
		3.1.3		91
		3.1.4	Streamlines and stream-tubes, pathlines, and streaklines	93
		3.1.5	Visualization of flows	95
			3.1.5.1 Tracking by means of bubbles, smoke (gases),	07
			or dyes (liquids)	95 97
			3.1.5.2 Visualization by the use of anisotropic, reflecting particles	97 97
			3.1.5.3 Visualization by means of photo-active substances3.1.5.4 Visualization of variations in the index of	97
	3.2	Defer	refraction by the Schlieren method mations in flows	98
	3.2			99
		3.2.1 3.2.2	The local components of the velocity gradient field Analysis of the symmetric component: pure strain (deformation)	100 100
		3.2.2	3.2.2.1 Deformations due to the diagonal terms of the	100
			velocity-gradient tensor	101
			3.2.2.2 Deformations due to the off-diagonal terms of	101
			the velocity-gradient tensor	103
		3.2.3	Analysis of the antisymmetric component: pure rotation	103
		3.2.3	Small and large deformations	104
		0.2.4	3.2.4.1 The case of small deformations	100
			3.2.4.1 The case of small deformations 3.2.4.2 Large deformations	107
	3.3	Tho o	onservation of mass in fluid flow	110
	0.0	3.3.1	The equation of continuity	110
		3.3.22	The incompressibility of a fluid	110
		3.3.3	Analogies with electromagnetic theory	112
		0.0.0		114

	3.4	The st	ream function	115
		3.4.1	The introduction and significance of the stream function	115
		3.4.2	Examples of two-dimensional flows and of their stream functions	117
		3.4.3	Axially symmetric flows	121
	3.5		measurements of velocity and of velocity gradients in fluid flows	122
		3.5.1	Measurement of the local velocity of a fluid:	100
			laser Doppler anemometry	122
			3.5.1.1 The relationship between the fluid velocity and	100
			the frequency of the optical signal	123
			3.5.1.2 Advantages of laser Doppler anemometers 3.5.1.3 Problems and limitations	125
		250		125
		3.5.2	Determination of the local velocity gradients 3.5.2.1 The use of thermal marking	125
			5	126
			3.5.2.2 The use of partially reflecting particles	127
4		-	ics of fluids: local equations	128
	4.1		forces	126
		4.1.1	The general expression for the surface forces	126
			4.1.1.1 The stress tensor	126
		44.0	4.1.1.2 Pressure forces and the shear stress tensor	132
			The characteristics of the viscous shear stress tensor	132
		4.1.3		134
		4.1.4	Non-Newtonian fluids	136
			4.1.4.1 Behaviour dependent on the applied stress 4.1.4.2 Non-Newtonian time-dependent fluids	136
			4.1.4.2 Non-Newtonian time-dependent fluids 4.1.4.3 Some types of complex non-Newtonian behaviour	136
	4.2	The	quation of motion for a fluid	139 140
	4.2	4.2.1		140
		4.2.1	3	140
		4.2.3		142
		4.2.4	The dimensionless form of the Navrer-Stokes equation	143
	4.3		dary conditions for fluid flow	144
		4.3.1	The boundary condition at a solid wall	144
		4.3.2	Boundary conditions at the interface between two fluids:	
			surface tension effects	145
	4.4	A few	specific solutions of the Navier-Stokes equations	147
		4.4.1	The Navier-Stokes equation for one-dimensional flow	147
		4.4.2		146
		4.4.3	Poiseuille flow (a viscous fluid flowing in a stationary conduit)	149
			4.4.3.1 Flow between parallel planes	150
			4.4.3.2 Flow in a cylindrical tube	152
		4.4.4	Oscillating flows in a viscous fluid	155
			4.4.4.1 Shear flow near a plane oscillating parallel to itself	155
			4.4.4.2 The flow between two parallel planes induced by	
			an oscillating pressure gradient	156
		4.4.5	Flow driven by a gradient in the surface tension	
			(the Marangoni effect)	160
		4.4.6	Cylindrical Couette flow	163

6

Appe		representation of the stress tensor, the equation of continuity,	
		and the Navier-Stokes equations, for Newtonian fluids,	
		in the most commonly used co-ordinate systems	167
	A.1	Cartesian co-ordinates (x, y , z) Cylindrical co-ordinates (ρ, φ, z)	167 167
	A.2 A.3	Spherical polar co-ordinates (p, φ, z) Spherical polar co-ordinates (r, θ, φ)	
	A.3	Spherical polar co-ordinates (r, b, φ)	168
5 The	conse	ervation laws	170
5.1	Cons	ervation of mass	170
5.2	Cons	servation of momentum	171
	5.2.1	The local equation	171
	5.2.2	The integral expression of the law of conservation of momentum 5.2.2.1 The integral of the equation for conservation of	172
		momentum	172
		5.2.2.2 The case of an incompressible Newtonian fluid 5.2.2.3 The application of the momentum conservation	173
		laws to simple flows	174
		·	176
		The conservation of energy for a flowing incompressible	
		fluid with or without viscosity	177
		5.3.1.1 Derivation of the conservation equation	177
		5.3.1.2 Kinetic energy dissipation through viscosity	
		in a simple shear flow	178
		5.3.1.3 Kinetic energy dissipation in a Newtonian fluid	179
		Bernoulli's equation: applications	180
		5.3.2.1 Bernoulli's equation for stationary flow	180
		5.3.2.2 Bernoulli's equation for potential flow	181
		5.3.2.3 Applications of Bernoulli's equation	182
		5.3.2.4 The form of Bernoulli's equation for flow	
		along a curve	187
			189
		A jet incident on to a plane	189
		The exit jet from an opening in a reservoir	192
		5.4.2.1 The determination of the velocity in the exit jet	192
		5.4.2.2 Calculation of the vena contracta	193
		5.4.2.3 The force exerted by the fluid on the container	194
		The force on the walls of an axially symmetric conduit	
		with variable cross-section	194
		The hydraulic jump	197
		5.4.4.1 The qualitative properties of hydraulic jumps	197
		5.4.4.2 Liquid flow over a weir	199
		5.4.4.3 The hydraulic jump	203
		5.4.4.4 The relation between the fluid levels and the velocities on	
		the two sides of the jump	205
		Another application: a discharge sluice gate in a channel	205
		5.4.5.1 The reaction force on the sluice gate	20
		5.4.5.2 The critical Froude number resulting from the	
		application of Bernoulli's equation	207

6	Pote	Potential flow				
	6.1 6.2	Introduction				
		definitio	ons, properties, and examples of potential flow	210		
			Characteristics and examples of the velocity potential	210		
			The uniqueness of the velocity potential	210		
			Velocity potentials for simple flows and combinations of			
			potential functions	214		
			6.2.3.1 Uniform parallel flow	215		
			6.2.3.2 Vortex flow	216		
			6.2.3.3 Sources and sinks	217		
			6.2.3.4 Dipole flow	219		
			6.2.3.5 Solutions of Laplace's equation: superposition and			
			separation of variables	220		
			Examples of simple potential flows	221		
			6.2.4.1 Flow around a circular cylinder	221		
			6.2.4.2 A sphere in uniform flow 6.2.4.3 The Rankine solid	226		
			6.2.4.4 The sink and vortex	227		
	6.0			229		
	6.3		acting on an obstacle in potential flow Two-dimensional flow	230		
		0.3.1	6.3.1.1 The velocity potential	230 230		
			6.3.1.2 The forces acting on a two-dimensional obstacle	230		
		6.3.2	The case of an obstacle in three dimensions	236		
		0.0.2	6.3.2.1 The derivation of the velocity potential and of the	230		
			pressure field around a finite three-dimensional obstacle	236		
			6.3.2.2 The kinetic energy of the fluid	230		
			6.3.2.3 Impulse	239		
			6.3.2.4 The force on a solid object	240		
			6.3.2.5 The particular case of a spherical object	240		
	6.4	Linear	surface waves on an ideal fluid	240		
	••••		Swells, cat's paws, and breaking waves	241		
			Trajectories of fluid particles during the passing of a wave	245		
			Solitons	246		
	6.5	An ele	ctrical analogue for two-dimensional potential flows	248		
		6.5.1	Direct analogue	249		
			Inverse analogue	249		
	6.6	The co	omplex velocity potential	252		
		6.6.1	The definition of a complex potential	252		
		6.6.2	Complex potentials for several types of flow	253		
			6.6.2.1 Uniform parallel flow	253		
			6.6.2.2 Source and vortex	253		
			6.6.2.3 Dipole flow	254		
			6.6.2.4 Flow around a corner or near a stagnation point	254		
		6.6.3	Conformal mapping	256		
			6.6.3.1 The conformal mapping method	256		
			6.6.3.2 Transformation of a plane into a corner	259		
			6.6.3.3 The Joukowski transformation: modelling			
			an airplane wing in potential flow	259		

	Appendix A Appendix A	I: velocity potentials and stream functions for two-dimensional flows	266 267
		A2.1 Derivation of the velocity components from	201
		the stream function	267
		A2.2 Derivation of the velocity components from	
		the velocity potential	267
7	Vorticity: d	ynamics of vortices	268
		y and its electromagnetic analogue	268
	7.1.1	The vorticity vector	266
	7.1.2	The electromagnetic analogue	269
	7.1.3	Straight vortex tubes: the analogy with the magnetic field	
		due to a current-carrying wire	271
		7.1.3.1 The magnetic field around a straight wire and	
		velocity field resulting from a straight vortex tube	271
		7.1.3.2 An example of a line vortex: the Rankine vortex	274
		7.1.3.3 The kinetic energy per unit length of a line vortex	276
	7.1.4	The application of the electromagnetic analogy in	
		dealing with arbitrary distributions of vorticity	277
		7.1.4.1 The hydrodynamic equivalent of the law of	
		Biot and Savart	277
		7.1.4.2 An example: a self-induced velocity field	
		due to a curved vortex line	276
		lynamics of circulation	279
	7.2.1	Kelvin's theorem: the conservation of circulation	260
		7.2.1.1 Derivation of Kelvin's theorem	260
		7.2.1.2 The physical significance and	
		consequences of Kelvin's theorem	261
	7.2.2	Sources of circulation in the flow of viscous or compressible	
		fluids, or in the presence of non-conservative forces	264
		7.2.2.1 Non-conservative volume forces (term I of (7.30))	264
		7.2.2.2 Non-barotropicfluids (term II of (7.30))	286
	70 Tho	7.2.2.3 Viscosity effects (term III of (7.30))	266
		dynamics of voricity	289
	7.3.1	The transport equation for vorticity, and its consequences 7.3.1.1 The Helmholtz equation for an incompressible fluid	289
		7.3.1.2 Elongation and twisting of vortex tubes	269
		7.3.1.3 An example of the application of the	291
		conservation of vorticity: Hill's spherical vortex	293
	7.3.2	Equilibrium between elongation and diffusion in	233
	1.5.2	the dynamics of vorticity	295
		7.3.2.1 The evolution of vorttcity in an axially	200
		symmetric, elongational flow	295
		7.3.2.2 The creation and annihilation of vorticity in turbulent flow	200
		7.3.2.3 Aqualitative model for turbulence	296
	7.4 A fev	v examples of distributions of vorticity concentrated	200
		singularities: systems of vortex lines	298
	7.4.1	A few cases with vorticity concentrated in vortex filaments	298

		7.4.2	The dyna	amics of a system of parallel line vortices	300
			7.4.2.1	Parallel, line-vortex pairs	300
			7.4.2.2	Continuous and discrete vortex sheets	301
			7.4.2.3	Vortex streets	301
		7.4.3	Vortex rii	ngs	305
			7.4.3.1	The velocity of a vortex ring	306
			7.4.3.2	The kinetic energy of a vortex ring	307
			7.4.3.3	The momentum of a vortex ring	307
			7.4.3.4	Interactions between vortex rings, or between	
				a ring and a solid wall	310
8	Flow	at low	Reynol	ds numbers	311
	8.1	Examp	les of lo	w-Reynolds-number flows	311
	8.2	-		f motion at low Reynolds number	313
		8.2.1	•	kes equation	313
		8.2.2	Further	equivalent representations of the Stokes equation	314
		8.2.3		es of solutions of the Stokes equation	315
			-	Uniqueness	315
				Reversibility	316
				Superposition in the solutions of the Stokes equation	321
				A minimum in the energy dissipation	322
		8.2.4	Dimens	ional-analysis predictions for flows at low	
				ds number	323
	8.3	The fo	•	torques acting on a moving solid body	324
		8.3.1		proportionality between the velocity of	
				body and the external forces	325
		8.3.2		I symmetry properties of the tensors A_{ij} , B_{ij} , C_{ij} , and D_{ij}	326
		8.3.3		ect of the symmetry of solid bodies on	
				lied forces and torques	327
			8.3.3.1	Relationships between tensor coefficients for	
				a solid body having a plane of symmetry	328
			8.3.3.2	Bodies with three mutually perpendicular	
				planes of symmetry	329
			8.3.3.3		
				devoid of planes of symmetry	331
	8.4	Unifor	m-velocit	y motion of a sphere in a viscous fluid	333
	-	8.4.1		ocity field around a moving sphere	333
			8.4.1.1	The calculation of the pressure field	335
			8.4.1.2	The vorticity field corresponding to	
				the distribution of pressure	335
			8.4.1.3	The evaluation of the stream function Ψ from the vorticity	336
			8.4.1.4	The calculation of the velocity field	337
		8.4.2		ce acting on a moving sphere in a fluid of infinite extent:	
				g coefficient	338
		8.4.3		neralization of the solution of the Stokes equation to	
			-	periments	340
			8.4.3.1	A drop of fluid in motion within another immiscible fluid	340
			8.4.3.2	The frictional force on an object of arbitrary shape	341
				and Assistance and March 1991	

	8.4.4	Limitatio	ons on the Stokes treatment of flow at	
		low Rey	nolds numbers: the Oseen equation	343
		8.4.4.1	The kinetic energy of the fluid flowing far from the sphere	344
		8.4.4.2	Convection and acceleration effects far from the sphere	
			the Oseen equation	344
		8.4.4.3	Forces on an infinite circular cylinder in	
			low-Reynolds-number flow	346
18.5			lows at low Reynolds numbers: lubrication	347
£8.6	-		uspensions	351
	8.6.1		ology of suspensions	352
	8.6.2	Sedime	ntation of particles in a suspension	357
		8.6.2.1	· · · · · · · · · · · · · · · · · · ·	357
		8.6.2.2		359
{8.7		in porous		361
	8.7.1		aracteristic examples of the different types of flows	361
	8.7.2		ters characterising a porous medium	362
			Porosity	362
			Pore size	362
			Pore geometry	362
	070	8.7.2.4	Length scales characteristid of porous media	364
	8.7.3		porous media: Darcy's law	366
		8.7.3.1		366
		8.7.3.2	The Darcy equation generalized to three dimensions	
		8.7.3.3		367
		0.7.3.3	The pressure-flow rate relation at high velocities in a porous medium	368
		8.7.3.4	A two-dimensional model of a porous medium:	308
		0.7.3.4	the Hele-Shaw cell	368
	8.7.4	Permoal	bility models for media with cylindrical pores	308
	0.7.4	8.7.4.1	An estimate of the permeability for a porous	370
		0.7.4.	medium modelled by a group of parallel capillanes	370
		8.7.4.2	The permeability of a system of winding capillaries	371
		8.7.4.3	The Carman-Kozeny relation	372
	8.7.5		rmeability of porous media containing channels	
			able cross-section	373
		8.7.5.1		373
		8.752	The relationship between the size of the grains,	
			the permeability, and the electric conductivity for	
			a medium made from sintered glass beads	374
		8.7.5.3	The relationship between the sizes of channels,	
			the conductivity, and the permeability for	
			natural porous samples	375
	8. 7.6	The flow	w of immiscible fluids in a porous medium	377
		8.7.6.1	The effects of capillary forces on two-phase	
			flows in porous media	377
		8.7.6.2	Drainage flows at very low velocity	378
		8.7.6.3	The concept of relative permeability of a	
			porous medium	380

9			bundary layers	303	
	-	Introdu		383	
	9.2	•	tative physical discussion of the structure of		
	9.3		undary layer near a flat plate in uniform flow	385 388	
	9.5		quations of motion within the boundary layer: Prandtl theory The equations of motion near a flat plate	388	
		9.3.1	Transport of vorticity in the boundary layer		
		9.3.2 9.3.3		390	
		9.3.3	for the case of uniform, constant, external velocity	390	
	9.4	Volocit	ty profiles within boundary layers		
	9.4	9.4.1	The Blasius equation for uniform external flow	393	
		along a flat plate			
		9.4.2	An approximate solution of the Blasius equation	393 394	
		-	The frictional force on a flat plate in a uniform flow	394	
		9.4.3 9.4.4	The thickness of boundary layers	397	
		0.4.4	9.4.4.1 The displacement thickness δ	398	
			9.4.4.2 The momentum thickness δ^{**}	399	
		9.4.5		000	
		0.110	turbulent boundary layers	399	
	9.5	The la	aminar boundary layer in the presence of an external	000	
	0.0		ure gradient: boundary layer separation	400	
		9.5.1	A simplified physical treatment of the problem	400	
		9.5.2	Self-similar velocity profiles: flows such that $U(x) = Cx^m$	401	
		0.012	9.5.2.1 The Falkner-Skan equation	401	
			9.5.2.2 Velocity profiles within the boundary layer	402	
			9.5.2.3 An approximate calculation of the condition		
			for boundary layer separation	404	
		9.5.3	Boundary layers with constant thickness	406	
		9.5.4	Flows lacking self-similarity: boundary layer separation	407	
		9.5.5	The practical consequences of boundary layer separation	409	
		9.5.6	Separation of turbulent boundary layers:		
			the decrease of the drag force	409	
	9.6	A few	applications of boundary layer separation		
		proble	ems in aerodynamics	412	
		9.6.1	The aerodynamics of airplane wings	412	
			9.6.1.1 The mechanism that supports an airplane	412	
			9.6.1.2 The separation phenomenon	415	
			9.6.1.3 Control of the boundary layer by means of		
			leading-edge wing flaps	416	
			9.6.1.4 Control of the boundary layer by means of		
			trailing-edge wing flaps	417	
		9.6.2	Controlling boundary layer separation by suction	417	
		9.6.3	The control of boundary layer separation by adjustment of		
			the profile of the solid object	417	
			9.6.3.1 The 'Fastback' profile for an automobile	417	
			9.6.3.2 An aerodynamic baffle over the gap between		
	c 7	T 1	the cab and trailer, in a tractor-trailer combination	420	
	9.7	Inerm	nal and mass boundary layers	420	

	9.7.1	Thermal	boundary layers	421
		9.7.1.1	The case of a Prandtl number much greater than unity	422
			The case of a Prandtl number much smaller than unity	425
		9.7.1.3	The case of a Prandtl number of order unity	425
			An application of the heat exchange laws between	
			a solid and a flowing fluid: the hot-wire anemometer	425
	9.7.2		ration boundary layers and polarography	428
			The concentration boundary layer resulting from	
			an electrode embedded in a wall	428
		9.7.2.2	Measurement of a velocity near a wall by	
			a polarographic method	430
98		aminar wa		432
	9.8.1		tive approach to the problem	432
	9.8.2		ution of the equation of motion in the wake far from the object	433
		9.8.2.1	The wake behind an object that is finite in all directions	433
		9.8.2.2	The wake behind an infinitely long cylinder	435
	9.8.3		g force on a body: the relationship with	
		the veloc	city profile in the wake	435
H١	/drodv	namicins	stabilities	439
-	-	rmal conv		439
	10.1	.1 Conv	vective transport equations for heat	439
	10.1		nal convection resulting from a horizontal	
		tempe	erature gradient	440
10	.2 The		n-Benard instability	443
	10.	2.1 Ades	scription of the Rayleigh-Benard instability	444
	10.	2.2 The	mechanism of the Rayleigh-Benard instability,	
		and	orders of magnitude	445
		10.2.2	2.1 Aqualitative mechanism for the instability	445
			.2.2 The physical criterion for the instability ($Pr \gg 1$)	446
	10		two-dimensional solution of the Rayleigh-Benard problem	446
		10.2.		448
		10.2.	.3.2 The domain of instability as a function	
			of the wave vector	452
		10.2.	.3.3 Amplitude variations as a function of distance	
			above the threshold	453
1(bles of threshold instabilities	455
			Taylor-Couette instability	455
40			Bénard-Marangoni instability	459
10.			s of instability	462
	10		• Kelvin-Helmholtz instability	463
		10.4.1		
		10.4	in density can be neglected 1.2 Effects due to surface tension and differences in density	465
	10	10.4. 0.4.2 Pois	seuille flow in a tube, and between parallel plates	467
			role of the shape of the velocity and vorticity profiles	469 470
Δr			ion to chaos	470
	•		riments in fully developed turbulence	471

10

		A2.1 Two-dimensional flows	477
		A2.2 Three-dimensional flows	479
Appendi	x Su	perfluid helium: an (almost) ideal fluid	402
A.1	Importa	ant properties of Helium II at finite temperatures	482
	A.I.I	The two-fluid model for Helium II	482
	A.1.2	Quantization of the circulation of the superfluid velocity \mathbf{v}_s	483
	A.1.3	Experimental evidence for the existence of a superfluid	
		component flowing with no energy dissipation	484
		A.1.3.1 Superfluid helium films	484
		A.1.3.2 Flow through extremely small holes (10 µm or less)	484
		A.1.3.3 Persistent currents	484
A.2	Vortice	es in superfluid helium	485
	A.2.1	The existence of vortex filaments in superfluid helium	485
	A.2.2	Setting a volume of superfluid helium in rotation	485
	A.2.3	Experimental evidence for the quantisation of circulation in	
		superfluid helium: the Hall and Vinen experiment	486
	A.2.4	Dynamics of vortex rings in superfluid helium	488

Bibliography

Index

469

496