CONTENTS

	Preface	ix
7	Subthreshold response to synaptic input	1
7.1	Introduction: cable equation with ionic currents	1
7.2	Equations for the potential with space clamp and	4.0
	synaptic input: reversal potentials	4
7.3	Cable equation with excitatory and inhibitory reversal potentials	8
7.4	Space-clamped equation with reversal potentials	10
7.5	Response to impulsive conductance changes:	17
7.6	Response to sustained synaptic input: postsynaptic	10.00
7.7	potentials	30
1.1	Neurons with dendritic trees	37
8	Theory of the action potential	40
8.1	Introduction	40
8.2	Ionic currents and equilibrium potentials	41
8.3	Quantitative description of the potassium and sodium conductances	44
8.4	Space-clamped action potential	52
8.5	Propagating action potential: traveling-wave	
8.6	equations	54
8.7	Nonlinear reaction—diffusion systems A numerical method of solution of nonlinear	57
	reaction-diffusion equations	60
8.8	The Fitzhugh-Nagumo equations	70
8.9	Responses to sustained inputs: repetitive activity	82
8.10	Analyses of the Hodgkin-Huxley equations	92
8.11	Action potentials in myelinated nerve: the	
	Frankenhaeuser-Huxley equations	96
8.12	Anatomical factors in action-potential generation	104
9	The stochastic activity of neurons	111
9.1	Introduction	111
9.2	Probability and random variables	116
9.3	The quantum hypothesis in synaptic transmission	119

	Contents	V111
9.4	The Poisson process	122
9.5	Poisson excitation with Poisson inhibition	128
9.6	The Wiener process	135
9.7	Markov processes	144
9.8	Stein's model	150
9.9	The Ornstein-Uhlenbeck process	166
9.10	Stochastic cable theory	173
10	The analysis of stochastic neuronal activity	191
10.1	Introduction	191
10.2	Renewal-process model of a spike train	193
10.3	Estimation of the parameters of an ISI distribution	198
10.4	The nature of statistical tests	205
10.5	Testing and comparing distributions	207
10.6	Stationarity	210
10.7	Independence of ISI	212
10.8	Tests for Poisson processes	217
10.9	Tests for a renewal process	221
10.10	Generalizations and modifications to the standard	222
	renewal model	222
10.11	Parameter estimation for diffusion processes	220
10.15	representing nerve membrane potential	228
10.12	The classification and interpretation of ISI	231
10.12	distributions Postationally stime histograms	231
10.13	Poststimulus time histograms	234
10.14	Statistical analysis of the simultaneous spiking activities of two or more neurons	237
	References	247
	Index	251