CONTENTS

	Page
From the Preface to the first English edition	xi
Preface to the second English edition	xii
Preface to the third Russian edition	xiii
Editor's Preface to the fourth Russian edition	xiv
Notation	xv
L THE BASIC CONCEPTS OF QUANTUM MECHANICS	
1. The uncertainty principle	1
§2. The principle of superposition	6
3. Operators	8
4 Addition and multiplication of operators	13
4 The continuous spectrum	15
§6. The passage to the limiting case of classical mechanics	19
7. The wave function and measurements	21
II. ENERGY AND MOMENTUM	25
8 The Hamiltonian operator	25
9. The differentiation of operators with respect to time	26
10. Stationary states	27
11. Matrices	30
12. Transformation of matrices	35
13. The Heisenberg representation of operators	37
14. The' density matrix	38
15. Momentum	41
16. Uncertainty relations	45
III. SCHRÖDINGER'S EQUATION	
17. Schrödinger's equation	50
18. The fundamental properties of Schrödinger's equation	53
19. The current density	55
20. The variational principle	58
21. General properties of motion in one dimension	60
22. The potential well	63
23. The linear oscillator	67
24. Motion in a homogeneous field	74
25. The transmission coefficient	76
IN ANCHLAD MOMENTUM	
1V. ANGULAK MOMENTUM 26 Angular momentum	82
27 Figenvalues of the angular momentum	86
27. Engenvalues of the angular momentum	00

28. Eigenfunctions of the angular momentum 89

Contents

V. MOTION IN A CENTRALLY SYMMETRIC FIELD32. Motion in a centrally symmetric field10233. Spherical waves10534. Resolution of a plane wave11235. Fall of a particle to the centre11436. Motion in a Coulomb field (spherical polar coordinates)11737. Motion in a Coulomb field (parabolic coordinates)129VI. PERTURBATION THEORY38. Perturbations independent of time13340. Perturbations depending on time14241. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444, The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16494. Quasi-classical motion in a centrally symmetric field17551. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VII. SPIN54. Spin20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles with arbitrary spin21059. Partial polarization of particles22161. The versal and Kramers' theore	29. Matrix elements of vectors30. Parity of a state31. Addition of angular momenta	page 92 96 99
2. MOTION IN A CENTRALLY STRMETRIC FIELD32. Motion in a centrally symmetric field10233. Spherical waves10534. Resolution of a plane wave11235. Fall of a particle to the centre11436. Motion in a Coulomb field (spherical polar coordinates)11737. Motion in a Coulomb field (parabolic coordinates)129VI. PERTURBATION THEORY38. Perturbations independent of time13340. Perturbations depending on time14241. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444. The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case16480 Bohr and Sommerfeld's quantization rule17049. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles with arbitrary spin21058. The operator of finite rotat	V MOTION IN A CENTRALLY SYMMETRIC FIELD	
32. Motion in a centrally symmetric field 102 33. Spherical waves 105 34. Resolution of a plane wave 112 35. Fall of a particle to the centre 114 36. Motion in a Coulomb field (spherical polar coordinates) 117 37. Motion in a Coulomb field (parabolic coordinates) 117 37. Motion in a Coulomb field (parabolic coordinates) 112 38. Perturbations independent of time 133 39. The secular equation 138 40. Perturbations under a perturbation acting for a finite time 146 41. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 160 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbatio	v. MOTION IN A CENTRALLY SYMMETRIC FIELD	100
3.5. Spherical waves10534. Resolution of a plane wave11235. Fall of a particle to the centre11436. Motion in a Coulomb field (spherical polar coordinates)11737. Motion in a Coulomb field (parabolic coordinates)129VI. PERTURBATION THEORY38. Perturbations independent of time13339. The secular equation13840. Perturbations under a perturbation acting for a finite time14641. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444. The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case16748. Bohr and Sommerfeld's quantization rule17049. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations19554. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles21559. Partial polarization of particles215 <td>32. Motion in a centrally symmetric field</td> <td>102</td>	32. Motion in a centrally symmetric field	102
11111235. Fall of a particle to the centre11435. Fall of a particle to the centre11436. Motion in a Coulomb field (spherical polar coordinates)11737. Motion in a Coulomb field (parabolic coordinates)129VI. PERTURBATION THEORY38. Perturbations independent of time13339. The secular equation13840. Perturbations depending on time14241. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444. The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16748. Bohr and Sommerfeld's quantization rule17049. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations19554. Spin20355. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Tim	34 Resolution of a plane wave	105
11111136. Motion in a Coulomb field (spherical polar coordinates)11737. Motion in a Coulomb field (spherical polar coordinates)129VI. PERTURBATION THEORY38. Perturbations independent of time13339. The secular equation13840. Perturbations depending on time14241. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444. The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case50. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin20055. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem22361. The principle of indistinguishability of similar particles22762. Exchange interaction230	35 Fall of a particle to the centre	114
30.Include in a Coulomb field (parabolic coordinates)1137.Motion in a Coulomb field (parabolic coordinates)129VI. PERTURBATION THEORY38.Perturbations independent of time13339.The secular equation13840.Perturbations depending on time14241.Transitions under a perturbation acting for a finite time14642.Transitions under the action of a periodic perturbation15143.Transitions in the continuous spectrum15444.The uncertainty relation for energy15745.Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50.The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16748.Bohr and Sommerfeld's quantization rule17049.Quasi-classical motion in a centrally symmetric field17550.Penetration through a potential barrier17951.Calculation of the quasi-classical matrix elements18552.The transition probability in the quasi-classical case19153.Transitions under the action of adiabatic perturbations195VIII. SPIN54.Spin20365.Spinors20667.The wave functions of particles with arbitrary spin21058.The operator of finite rotations21559.Partial polarization of particles22160.T	36 Motion in a Coulomb field (spherical polar coordinates)	117
VI. PERTURBATION THEORY38. Perturbations independent of time13339. The secular equation13840. Perturbations depending on time14241. Transitions under a perturbation acting for a finite time14642. Transitions under the action of a periodic perturbation15143. Transitions in the continuous spectrum15444. The uncertainty relation for energy15745. Potential energy as a perturbation159VII. THE QUASI-CLASSICAL CASE50. The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16748. Bohr and Sommerfeld's quantization rule17049. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem22312. IDENTITY OF PARTICLES22761. The principle of indistinguishability of similar particles22762. Exchange interaction230	37. Motion in a Coulomb field (parabolic coordinates)	129
38. Perturbations independent of time 133 39. The secular equation 138 40. Perturbations depending on time 142 41. Transitions under a perturbation acting for a finite time 146 42. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 50. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of	VI PERTURBATION THEORY	
39. The secular equation 138 40. Perturbations depending on time 142 41. Transitions under a perturbation acting for a finite time 146 42. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 500. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polariz	38 Perturbations independent of time	133
40. Perturbations depending on time 142 41. Transitions under a perturbation acting for a finite time 146 42. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 VIII. SPIN 199 54. Spin os 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59.	39. The secular equation	138
41. Transitions under a perturbation acting for a finite time 146 42. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 8.0. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 VIII. SPIN 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223	40. Perturbations depending on time	142
42. Transitions under the action of a periodic perturbation 151 43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 5.0. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 210 61. The principle of indistinguishabili	41. Transitions under a perturbation acting for a finite time	146
43. Transitions in the continuous spectrum 154 44. The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 5.0. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 21 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction <	42. Transitions under the action of a periodic perturbation	151
44, The uncertainty relation for energy 157 45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 50. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 VIII. SPIN 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	43. Transitions in the continuous spectrum	154
45. Potential energy as a perturbation 159 VII. THE QUASI-CLASSICAL CASE 5.0. The wave function in the quasi-classical case 164 Boundary conditions in the quasi-classical case 167 48. Bohr and Sommerfeld's quantization rule 170 49. Quasi-classical motion in a centrally symmetric field 175 50. Penetration through a potential barrier 179 51. Calculation of the quasi-classical matrix elements 185 52. The transition probability in the quasi-classical case 191 53. Transitions under the action of adiabatic perturbations 195 VIII. SPIN 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 211 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	44, The uncertainty relation for energy	157
VII. THE QUASI-CLASSICAL CASE5.0. The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16748. Bohr and Sommerfeld's quantization rule17049. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin20355. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES61. The principle of indistinguishability of similar particles22762. Exchange interaction230	45. Potential energy as a perturbation	159
5.0.The wave function in the quasi-classical case164Boundary conditions in the quasi-classical case16748.Bohr and Sommerfeld's quantization rule17049.Quasi-classical motion in a centrally symmetric field17550.Penetration through a potential barrier17951.Calculation of the quasi-classical matrix elements18552.The transition probability in the quasi-classical case19153.Transitions under the action of adiabatic perturbations195VIII. SPIN54.Spin20356.Spinors20657.The wave functions of particles with arbitrary spin21058.The operator of finite rotations21559.Partial polarization of particles22160.Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES61.The principle of indistinguishability of similar particles22762.Exchange interaction230	VII. THE QUASI-CLASSICAL CASE	
Boundary conditions in the quasi-classical case167 48. Bohr and Sommerfeld's quantization rule170 49. Quasi-classical motion in a centrally symmetric field175 50. Penetration through a potential barrier179 51. Calculation of the quasi-classical matrix elements185 52. The transition probability in the quasi-classical case191 53. Transitions under the action of adiabatic perturbations195 VIII. SPIN199 55. The spin operator203 56. Spinors206 57. The wave functions of particles with arbitrary spin210 58. The operator of finite rotations215 59. Partial polarization of particles221 60. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES227 61. The principle of indistinguishability of similar particles227 62. Exchange interaction230	§. The wave function in the quasi-classical case	164
48.Bohr and Sommerfeld's quantization rule17049.Quasi-classical motion in a centrally symmetric field17550.Penetration through a potential barrier17951.Calculation of the quasi-classical matrix elements18552.The transition probability in the quasi-classical case19153.Transitions under the action of adiabatic perturbations195VIII. SPIN54.Spin20355.The spin operator20356.Spinors20657.The wave functions of particles with arbitrary spin21058.The operator of finite rotations21559.Partial polarization of particles22160.Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES61.The principle of indistinguishability of similar particles22762.Exchange interaction230	Boundary conditions in the quasi-classical case	167
49. Quasi-classical motion in a centrally symmetric field17550. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES61. The principle of indistinguishability of similar particles22762. Exchange interaction230	48. Bohr and Sommerfeld's quantization rule	170
50. Penetration through a potential barrier17951. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN54. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES22762. Exchange interaction230	49. Quasi-classical motion in a centrally symmetric field	175
51. Calculation of the quasi-classical matrix elements18552. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations19554. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES22762. Exchange interaction230	50. Penetration through a potential barrier	179
52. The transition probability in the quasi-classical case19153. Transitions under the action of adiabatic perturbations195VIII. SPIN19954. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES22762. Exchange interaction230	51. Calculation of the quasi-classical matrix elements	185
53. Transitions under the action of adiabatic perturbations 195 VIII. SPIN 54. Spin 199 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	52. The transition probability in the quasi-classical case	191
VIII. SPIN54. Spin19955. The spin operator20356. Spinors20657. The wave functions of particles with arbitrary spin21058. The operator of finite rotations21559. Partial polarization of particles22160. Time reversal and Kramers' theorem223IX. IDENTITY OF PARTICLES61. The principle of indistinguishability of similar particles22762. Exchange interaction230	53. Transitions under the action of adiabatic perturbations	195
54. Spin 100 55. The spin operator 203 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	VIII. SPIN	199
53. The spin operator 205 56. Spinors 206 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 217 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	54. Spill 55. The spin operator	203
50. Spinors 200 57. The wave functions of particles with arbitrary spin 210 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 217 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	56 Spinors	205
57. The wave functions of particles with arbitrary spin 216 58. The operator of finite rotations 215 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 217 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	50. Spinors	210
50. The operator of finite foundations 210 59. Partial polarization of particles 221 60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 211 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	58 The operator of finite rotations	210
60. Time reversal and Kramers' theorem 223 IX. IDENTITY OF PARTICLES 211 61. The principle of indistinguishability of similar particles 227 62. Exchange interaction 230	59 Partial polarization of particles	210
IX. IDENTITY OF PARTICLES 61. The principle of indistinguishability of similar particles 62. Exchange interaction 230	60. Time reversal and Kramers' theorem	223
61. The principle of indistinguishability of similar particles22762. Exchange interaction230	IX IDENTITY OF PARTICLES	
62. Exchange interaction 230	61 The principle of indistinguishability of similar particles	227
	62. Exchange interaction	230

Contents

		Page
97.	Selection rules for matrix elements	385
98. C	ontinuous groups	389
99.	Two-valued representations of finite point groups	393
	VIII DOLVATOMIC MOLECIILES	
	XIII. FOLIATOMIC MOLECULES	
100.	The classification of molecular vibrations	398
101. V	fibrational energy levels	405
102.	Stability of symmetrical configurations of the molecule	407
103.	Quantization of the rotation of a top	412
104.	The interaction between the vibrations and the rotation of the molecu.	12 42 I
105.	The classification of molecular terms	42.5
	XIV. ADDITION OF ANGULAR MOMENTA	
106.	3j-symbols	433
107.	Matrix elements of tensors	441
108.	6j-symbols	444
109.	Matrix elements for addition of angular momenta	450
110.	Matrix elements for axially symmetric systems	452
	XV. MOTION IN A MAGNETIC FIELD	
111	Schrödinger's equation in a magnetic field	455
111.	Motion in a uniform magnetic field	458
112.	An atom in a magnetic field	463
114.	Spin in a variable magnetic field	470
115.	The current density in a magnetic field	472
	YVI NUCLEAD STRUCTURE	
	AVI. NOCLEAR STRUCTURE	
116.	Isotopic invariance	474
117.	Nuclear forces	478
118.	The shell model	482
119.	Non-spherical nuclei	491
120.	Isotopic smit	490
121.,	Hyperfine structure of molecular levels	501
122.	appendict succure of molecular levels	001
	XVII. ELASTIC COLLISIONS	
123.	The general theory of scattering	504
124.	An investigatian of the general formula	508
125.	The unitarity condition for scattering	511
126.	Born's formula	515
127.	The quasi-classical case	521

viii

	Contents	1 X
		Page
128.	Analytical properties of the scattering amplitude	526
129.	The dispersion relation	532
130.	The scattering amplitude in the momentum representation	535
131.	Scattering at high energies	538
132.	The scattering of slow particles	545
133.	Resonance scattering at low energies	552
134.	Resonance at a quasi-discrete level	559
135.	Rutherford's formula	564
136.	The system of wave functions of the continuous spectrum	567
137.	Collisions of like particles	571
138.	Resonance scattering of charged particles	574
139.	Elastic collisions between fast electrons and atoms	579
140.	Scattering with spin-orbit interaction	583
141.	Regge poles	589

XVIII. INELASTIC COLLISIONS

142.	Elastic scattering in the presence of inelastic processes	595
143.	Inelastic scattering of slow particles	601
144.	The scattering matrix in the presence of reactions	603
145.	Breit and Wigner's formulae	607
146.	Interaction in the final state in reactions	615
147.	Behaviour of cross-sections near the reaction threshold	618
148.	Inelastic collisions between fast electrons and atoms	624
149.	The effective retardation	633
150.	Inelastic collisions between heavy particles and atoms	637
151.	Scattering of neutrons	640
152.	Inelastic scattering at high energies	644

MATHEMATICAL APPENDICES

§a.	Hermite polynomials	651
§Ъ.	The Airy function	654
§c.	Legendre polynomials	656
§d.	The confluent hypergeometric function	659
Şe.	The hypergeometric function	663
§f.	The calculation of integrals containing confluent hypergeometric functions	666

Index	ζ