CONTENTS

СНА	PTER 1 STATIONARY ELECTRIC FIELDS	1
1.1	Introduction	1
	BASIC LAWS AND CONCEPTS OF ELECTROSTATICS	2
1.2	Force Between Electric Charges; The Concept of Electric Field	2
1.3	The Concept of Electric Flux and Flux Density; Gauss's Law	6
1.4	Examples of the Use of Gausis's Law	9
1.5	Surface and Volume Integrals; Gauss's Law in Vector Form	13
1.6	Tubes of Flux ; Plotting of Field Lines	15
1.7	Energy Considerations; Conservative Property of Electrostatic	
	Fields	17
1.8	Electrostatic Potential : Equipotentials	20
1.9	Capacitance	27
	DIFFERENTIAL FORMS OF ELECTROSTATIC LAWS	28
1.10	Gradient	28
1.11	The Divergence of an Electrostatic Field	30
1.12	Laplace's and Poisson's Equations	35
1.13	Static Fields Arising from Steady Currents	37
1.14	Boundary Conditions in Electrostatics	38
1.15	Direct Integration of Laplace's Equation: Field Between Coaxial	
	Cylinders with Two Dielectrics	42
1.16	Direct Integration of Poisson's Equation : The pm Semiconductor	
	Junction	44
1.17	Uniqueness of Solutions	47

^	Contents	
	SPECIAL TECHNIQUES FOR ELECTROSTATIC	
1 18	The Lise of Images	48
1.19	Graphical Field Mapping	48
1.20	Examples of Information Obtained from Field Mans	53
	ENERGY IN FIELDS	56
1 21	Energy of an Electrostatic Service	58
D L	Lifergy of an Electrostatic System	58
Frobi	iems	61
CHA	PTER 2 STATIONARY MAGNETIC FIELDS	68
2.1	Introduction	68
	STATIC MAGNETIC FIELD LAWS AND CONCEPTS	70
22	Concept of a Magnetic Field	70
2.2	Ampere's Law	70
2.4	The Line Integral of Magnetic Field	75
2.5	Inductance from Flux Linkages; External Inductance	79
	DIFFERENTIAL FORMS FOR MAGNETOSTATICS AND	
	THE USE OF POTENTIAL	82
2.6	The Curl of a Vector Field	82
2.7	Curl of Magnetic Field	86
2.8	Relation Between Differential and Integral Forms of the Field	
	Equations	88
2.9	Vector Magnetic Potential	91
2.10	Distant Field of Current Loop: Magnetic Dipole	94
2.11	Divergence of Magnetic Flux Density Differential Equation for Vector Magnetic Potential	90 96
2.12	Scalar Magnetic Potential for Current Free Pagions	98
2.15	Boundary Conditions for Static Magnetic Fields	99
2.15	Materials with Permanent Magnetization	100
2.10	MAGNETIC FIFI D ENERGY	104
216	Energy of a Static Magnetic Field	104
2.10	Inductance from Energy Storage: Internal Inductance	104
Prol	hans	100
1700	nems	107
CH	APTER 3 MAXWELL'S EQUATIONS	111
3.1	Introduction	111
	LARGE-SCALE AND DIFFERENTIAL FORMS OF	
	MAXWELL'S EQUATIONS	113

	Contents	xi
3.2	Voltages Induced by Changing Magnetic Fields	113
3.3	Faraday's Law for a Moving System	116
3.4	Continuity of Charge and the Concept of Displacement Current	119
3.5	Physical Pictures of Displacement Current	120
3.6	Maxwell's Equations in Differential Equation Form	123
3.7	Maxwell's Equations in Large-Scale Form	126
3.8	Maxwell's Equations for the Time-Periodic Case	127
	EXAMPLES OF USE OF MAXWELL'S EQUATIONS	130
3.9	Maxwell's Equations and Plane Waves	130
3.10	Uniform Plane Waves with Steady-State Sinusoids	133
3.11	The Wave Equation in Three Dimensions	135
3.12	Power Flow in Electromagnetic Fields—Poynting's Theorem	137
3.13	Continuity Conditions for as Fields at a Day It.	141
5.14	Solutions	143
3.15	Boundary Conditions at a Perfect Conductor for ac Fields	146
3.16	Penetration of Electromagnetic Fields into a Good Conductor	147
3.17	Internal Impedance of a Plane Conductor	151
3.18	Power Loss in a Plane Conductor	154
	POTENTIALS FOR TIME-VARYING FIELDS	156
3.19	A Possible Set of Potentials for Time-Varying Fields	156
3.20	The Retarded Potentials as Integrals over Charges and Currents	158
3.21	The Retarded Potentials for the Time-Periodic Case	160
Prob	lems	161
CHA	APTER 4 THE ELECTROMAGNETICS OF CIRCUITS	168
4.1	Introduction	
	THE IDEALIZATIONS OF CLASSICAL CIRCUIT THEORY	169
4.2	Kirchhoff's Voltage Law	169
4.3	Kirchhoff's Current Law and Multimesh Circuits	174
	SKIN EFFECT IN PRACTICAL CONDUCTORS	178
4.4	Distribution of Time-Varying Currents in Conductors of Circular	
	Cross Section	17
4.5	Impedance of Round Wires	18
	CALCULATION OF CIRCUIT ELEMENTS	184
4.6	Self-Inductance Calculations	18
4.7	Mutual Inductance	18
4.8	Inductance of Practical Coils	19
4.9	Self- and Mutual Capacitance	19

Contents

	CIRCUITS THAT ARE NOT SMALL COMPARED WITH WAVELENGTH	196
4.10 4.11 4.12	Distributed Effects and Retardation Circuit Formulation Through the Retarded Potentials Circuits with Radiation	196 198 203
Probl	ems	206
CHA	PTER 5 TRANSMISSION LINES	210
5.1	Introduction	210
	TIME AND SPACE DEPENDENCE OF SIGNALS ON IDEAL TRANSMISSION LINES	211
5.2	Voltage and Current Variations Along an Ideal Transmission	
53	Line Delation of Field and Circuit Analysis of Transmission Lines	211
5.4	Reflection and Transmission at a Resistive Discontinuity	213
	SINUSOIDAL WAVES ON IDEAL TRANSMISSION	210
	LINES WITH DISCONTINUITIES	223
5.5	Reflection and Transmission Coefficients and Impedance and	
	Admittance Transformations for Sinusoidal Voltages	223
5.6	Standing-Wave Ratio	226
5./ 5.8	The Smith Transmission-Line Chart	229
5.0	NONIDERE TRANSMISSION LINES	238
- 0	NONIDEAL TRANSMISSION LINES	241
5.9	Power Loss and Attenuation in Low-Loss Lines	241
5.10	Lines	243
5.11	Transmission Lines with General Forms of Distributed	243
	Impedances; $\omega - \beta$ Diagram	247
5.12	Group and Energy Velocities	254
5.13	Backward Waves	257
5.14	Transmission Lines Used with Pulses	258
5.15	Nonuniform Transmission Lines	261
Probl	lems	263
CHA	APTER 6 PLANE WAVE PROPAGATION AND	
REF	LECTION	270
6.1	Introduction	270

-		210
	PLANE WAVE PROPAGATION	271

	Contents	XIII
5.2	Uniform Plane Waves in a Perfect Dielectric	271
5.3 5.4	Polarization of Plane Waves Waves in Imperfect Dielectrics and Conductors	276 279
	PLANE WAVES NORMALLY INCIDENT ON	_ , ,
	DISCONTINUITIES	283
6.5	Reflection of Normally Incident Plane Waves from Perfect	102
6.6	Transmission-Line Analogy of Wave Propagation : The	203
	Impedance Concept	285
6.7	Normal Incidence on a Dielectric Perfection Problems with Several Dielectrics	288 291
0.0	PLANE WAVES OBLIQUELY INCIDENT ON	271
	DISCONTINUITIES	296
6.9	Incidence at Any Angle on Perfect Conductors	296
6.10	Phase Velocity and Impedance for Waves at Oblique Incidence	299
6.12	Total Reflection	306
6.13	Polarizing or Brewster Angle	308
6.14	Multiple Dielectric Boundaries with Oblique Incidence	309
Prot	iems .	512
	and the second contract, and go the	
CHA BOI	APTER 7 TWO- AND THREE-DIMENSIONAL JNDARY VALUE PROBLEMS	317
		217
7.1	Introduction	317
	NUMERICAL METHODS	318
7.2	Roles of Helmholtz, Laplace, and Poisson Equations	319
7.3	Numerical Solution of the Laplace, Poisson, and Helmholtz	320
	Equations	320
74	METHOD OF CONFORMAL TRANSFORMATION Method of Conformal Transformation and Introduction to	520
1.4	Complex-Function Theory	326
7.5	Properties of Analytic Functions of Complex Variables	328
7.6	Conformal Mapping for Laplace's Equation The Schwarz Transformation for General Polygons	331 340
7.8	Conformal Mapping for Wave Problems	343
	PRODUCT-SOLUTION METHOD	346
7.9	Laplace's Equation in Rectangular Coordinates	346

xiv	Contents	
7.10	Static Field Described by a Single Rectangular Harmonic	349
7.11	Fourier Series and Integral	351
7.12	Series of Rectangular Harmonics for Two- and	
	Three-Dimensional Static Fields	355
7.13	Cylindrical Harmonics for Static Fields	360
7.14	Bessel Functions	364
7.15	Bessel Function Zeros and Formulas	369
7.16	Expansion of a Function as a Series of Bessel Functions	371
7.17	Fields Described by Cylindrical Harmonics	373
7.18	Spherical Harmonics	375
7.19	Product Solutions for the Helmholtz Equation in Rectangular	
	Coordinates	382
7.20	Product Solutions for the Helmholtz Equation in Cylindrical	
	Coordinates	383
Prob	lems	384

CHA	APTER 8 WAVEGUIDES WITH CYLINDRICAL	
CON	IDUCTING BOUNDAR	392
8.1	Introduction	392
	GENERAL FORMULATION FOR GUIDED WAVES	393
8.2	Basic Equations and Wave Types for Uniform Systems	393
	CYLINDRICAL WAVEGUIDES OF VARIOUS CROSS SECTIONS	396
8.3	Waves Guided by Perfectly Conducting Parallel Plates	396
8.4	Guided Waves Between Parallel Planes as Superposition of	
	Plane Waves	402
8.5	Parallel-Plane Guiding System with Losses	405
8.6	Stripline and Microstrip Transmission Systems	407
8.7	Rectangular Waveguides	411
8.8	The TE_{10} Wave in a Rectangular Guide	418
8.9	Circular Waveguides	422
8.10	Higher Order Modes on Coaxial Lines	428
8.11	Excitation and Reception of Waves in Guides	430
	GENERAL PROPERTIES OF GUIDED WAVES	434
8.12 8.13	General Properties of <i>TEM</i> Waves on Multiconductor Lines General Properties of <i>TM</i> Waves in Cylindrical Conducting	434
	Guides of Arbitrary Cross Section	438
8.14	General Properties of TE Waves in Cylindrical Conducting	
	Guides of Arbitrary Cross Section	442

Guides of Arbitrary Cross Section

	Contents	
8.15	Waves Below and Near Cutoff	444
8.16	Dispersion of Signals Along Transmission ¹ Lines and Waveguides	446
Prob	lems	449

Contents

CHAPTER 9 SPECIAL WAVEGUIDE TYPES

9.1	Introduction	456
9.2	Dielectric Slab Guides	457
9.3	Parallel-Plane Radial Transmission Lines	460
9.4	Circumferential Modes in Radial Lines: S ectoral Horns	464
9.5	Duality: Propagation Between Inclined P lanes	466
9.6	Waves Guided by Conical Systems	467
9.7	Ridge Waveguide	469
9.8	The Idealized Helix and Other Slow-Way e Structures	471
9.9	Surface Guiding	474
9.10	Periodic Structures and Spatial Harmonic ^{SI}	477
Prob	lems	482

CHAPTER 10 RESONANT CAVITIES

10.1 10.2	Introduction Elemental Concepts of Cavity Resonator	rs	486 487
	RESONATORS OF SIMPLE SHAPE		489
10.3 10.4 10.5 10.6 10.7 10.8	Fields of Simple Rectangular Resonator Energy Storage, Losses, and Q of Simple Other Modes in the Rectangular Resona Circular Cylindrical Resonator Wave Solutions in Spherical Coordinates Spherical Resonators	Resonator tor PLING	489 491 492 495 498 502 504
10.9 10.10 10.11 10.12 10.13	Small-Gap Cavities Coupling to Cavities Cavity Q and Other Figures of Merit Cavity Perturbations Dielectric Resonators		504 507 509 512 515
Proble	ms.		520

xv

456

486

xvi	Contents	
CHAF	PTER 11 MICROWAVE NETWORKS	523
11.1 11.2 11.3	Introduction The Network Formulation Conditions for Reciprocity TWO-PORT WAVEGUIDE JUNCTIONS	523 525 528 530
11.4 11.5 11.6 11.7 11.8 11.9	Equivalent Circuits for a Two Port Determination of Circuit Parameters by Measurement Scattering and Transmission Coefficients Scattering Coefficients by Measurement Cascaded Two Ports Examples of Microwave and Optical Filters N-PORT WAVEGUIDE JUNCTIONS	530 532 535 538 538 538 542 547
11.10 11.11	Circuit and S-Parameter Representation of M Ports Directional Couplers and Hybrid Networks FREQUENCY CHARACTERISTICS OF WAVEGUIDE NETWORKS	547 551 555
11.12 11.13 11.14 11.15	Properties of a One-Port Impedance Equivalent Circuits Showing Frequency Characteristics of One Ports Examples of Cavity Equivalent Circuits Circuits Giving Frequency Characteristics of <i>N</i> Ports JUNCTION PARAMETERS BY ANALYSIS	555 558 562 566 567
11.16 Proble	Quasistatic and Other Methods of Junction Analysis	567 572
CHAI	PTER 12 RADIATION	577
12.1 12.2	Introduction Some Types of Practical Radiating Systems FIELD AND POWER CALCULATIONS WITH CURRENTS ASSUMED ON THE ANTENNA	577 579 582
12.3 12.4	Electric and Magnetic Dipole Radiators Systemization of Calculation of Radiating Fields and Power	582
12.5 12.6 12.7 12.8 12.9	from Currents on an Antenna Long Straight Wire Antenna; Half-Wave Dipole Radiation Patterns and Antenna Gain Radiation Resistance Antennas Above Earth or Conducting Plane Traveling Wave on a Straight Wire	586 589 592 595 596 598
14.7		590

	Contents	xvii
12.10	V and Rhombic Antennas	600
12.11	Methods of Feeding Wire Antennas	604
	RADIATION FROM FIELDS OVER AN APERTURE	607
12.12	Fields as Sources of Radiation	607
12.13	Plane Wave Sources	610
12.14	Examples of Radiating Apertures Excited by Plane Waves	612
12.15	Electromagnetic Horns	617
12.16	Resonant Slot Antenna	619
12.17	Lenses for Directing Radiation	621
	ARRAYS OF ELEMENTS	623
12.18	Radiation Intensity with Superposition of Effects	623
12.19	Linear Arrays	627
12.20	Radiation from Diffraction Gratings	631
12.21	Polynomial Formulation of Arrays and Limitations on	
	Directivity	633
12.22	Yagi–Uda Arrays	635
12.23	Frequency-Independent Antennas: Logarithmically Periodic Arrays	637
	FIELD ANALYSIS OF ANTENNAS	640
12.24	The Antenna as a Boundary-Value Problem	640
12.25	Direct Calculation of Input Impedance for Wire Antennas	647
12.26	Mutual Impedance Between Thin Dipoles	650
	RECEIVING ANTENNAS AND RECIPROCITY	652
12.27	A Transmitting–Receiving System	652
12.28	Reciprocity Relations	655
12.29	Equivalent Circuit of the Receiving Antenna	658
Problems		659

CHAPTER 13 ELECTROMAGNETIC PROPERTIES OF MATERIALS

666

13.1	Introduction	666
	LINEAR ISOTROPIC MEDIA	667
13.2	Characteristics of Dielectrics	667
13.3	Imperfect Conductors and Semiconductors	672
13.4	Perfect Conductors and Superconductors	676
13.5	Diamagnetic and Paramagnetic Responses	679
	NONLINEAR ISOTROPIC MEDIA	680
13.6	Materials with Residual Magnetization	680
13.7	Nonlinear Optics	685

xviii	Contents	
	ANISOTROPIC MEDIA	689
13.8	Representation of Anisotropic Dielectric Crystals	689
13.9	Plane Wave Propagation in Anisotropic Crystals	601
13.10	Plane Wave Propagation in Uniaxial Crystals	605
13.11	Electro-Optic Effects	608
13.12	Permittivity of a Stationary Plasma in a Magnetic Field	703
13.13	TEM Waves on a Plasma with Infinite Magnetic Field	705
13.14	Space-Charge Waves on a Moving Plasma with Infinite	100
	Magnetic Field	707
13.15	TEM Waves on a Stationary Plasma in a Finite Magnetic Field	700
13.16	Faraday Rotation	713
13.17	Permeability Matrix for Ferrites	715
13.18	TEM Wave Propagation in Ferrites	710
13.19	Ferrite Devices	721
Proble	Problems	
1.0000		726
CHA	PTER 14 OPTICS	732

14.1	Introduction	732
	RAY OR GEOMETRICAL OPTICS	733
14.2	Geometrical Optics Through Applications of Laws of Reflection and Refraction	733
14.3	Geometrical Optics as Limiting Case of Wave Optics	730
14.4	Rays in Inhomogeneous Media	741
14.5	Paraxial Ray Optics-Ray Matrices	746
14.6	Guiding of Rays by a Periodic Lens Systems or in Spherical Mirror Resonators	749
	DIELECTRIC OPTICAL WAVEGUIDES	752
14.7	Dielectric Guides of Planar Form	752
14.8	Dielectric Guides of Rectangular Form	756
14.9	Dielectric Guides of Circular Cross Section	759
14.10	Weakly Guiding Fibers: Dispersion	762
14.11	Propagation of Gaussian Beams in Graded-Index Fibers	765
	GAUSSIAN BEAMS IN SPACE AND IN OPTICAL	
	RESONATORS	768
14.12	Propagation of Gaussian Beams in a Homogeneous Medium	768
14.13	Transformation of Gaussian Beams by Ray Matrix	771
14.14	Gaussian Modes in Optical Resonators	774
14.15	Stability and Resonant Frequencies of Optical-Resonator Modes	779

xviii