Contents

Foreword by Victor F. Weisskopf	ix
Preface by the Editor	xi
Preface by the Students	xiii
Introduction	xv
1. Wave Functions of Force-Free Particles	1
1. Association of waves with particles	1
2. The wave function and wave equation	3
3. The uncertainty principle	5
4. Wave packets and the mechanics of point particle:.	
Probability density	10
5. Measuring arrangements. Discussion of examples	12
6. Classical statistics and quantum statistics	19
2. Description of a Particle in a Box and in Free Space	23
7. One particle in a box. The equation of continuity	23
8. Normalization in the continuum. The Dirac & function	27
9. The completeness relation. Expansion theorem	31
10. Initial-value problem and the fundamental solution	33
3. Particle in a Field of Force	38
11. The Hamiltonian operator	38
12. Hermitian operators	40

vi co	NTENTS
13. Expectation values and the classical equation of motion. Commutation relations (commutators)	43
41 More than One Particle	51
14. More than one particle	51
5. Eigenvalue Problems. Functions of Mathematical	
Physics	55
15. The linear harmonic oscillator. Hermite polynomials	55
16. Matrix calculus illustrated with the linear harmonic oscillator	63
17. The harmonic oscillator in a plane. Degeneracy	72
18. The hydrogen atom	88
6. Collision Processes	107
19. Asymptotic solution of the scattering problem	108
20. The scattering cross section. The Rutherford scattering formula	110
21. Solution of the force-free wave equation	112
22. Expansion of a plane wave in Legendre polynomials	115
23. Solution of the Schrödinger equation with an arbitrary	
central potential	116
24. The Born approximation	120
25. Scattering of low-energy particles	123
7. Approximate Methods for Solving the Wave Equation	126
26. Eigenvalue problem of a particle in a uniform field	126
27. The WKB method	132
8. Matrices and Operators. Perturbation Theory	138
28 General relationship between matrices and operators	
Transformation theory	138
29. General formalism of perturbation theory in the matrix	
representation	143
30. Time-dependent perturbation	147
9. Angular Momentum and Spin	152

CONTENTS	vii
31. General commutation relations	152
32. Matrix elements of the angular momentum	154
33. Spin	156
34. Spinors and space rotations	159
IO. Identical Particle:. with Spin	165
35. Symmetry classes	165
36. The exclusion principle	167
37. The helium atom	169
38. Collision of two identical particles: Mott's theory	173
39. The statistics of nuclear spins	175
Exercises	177
40. Fundamental solution for interval	177
41. Bound states and tunnel effect	179
42. Kronig-Penney potential	180
43. Spherical harmonics	180
44. Fundamental solution for harmonic oscillator	182
45. Angular momentum	184
46. Partial waves	185
47. The symmetrical top	186
Bibliography	191
Appendix. Comments by the Editor	193
Index	199