CONTENTS

is	tl of Symbols	page xi		
Preface				
1	NATURAL FORM, QUESTIONING, AND THEORY	1		
	1.1 The Great Puzzle: From What Principle can Geometric Form			
	be Deduced?	1		
	1.2' The Hardest Questions	4		
	1.3 The Objective and Constraints Principle	6		
	PROBLEMS	11		
	REFERENCES	12		
2	M ECHANICAL STRUCTURE	14		
	2.1 Cantilever Beam: Objective and Constraints	14		
	2.2 External Shape	16		
	2.3 Internal Structure	18		
	2.4 Shape and Structure, Together	20		
	2.5 Column in End Compression	22		
	2.6 The Concept of "Better"	24		
	PROBLEMS	2.5		
	REFERENCES	27		
3	THERMAL STRUCTURE	29		
	3.1 Cooling Electronics: Objective and Constraints	29		
	3.2 Volume Cooled by Natural Convection	29		
	3.3 Volume Cooled by Forced Convection	35		
	3.4 The Method of Intersecting the Asymptotes	40		
	3.5 The Balance between Stream-Travel Time and Diffusion Time	41		
	3.6 Optimal Longitudinal Flow Pulsations	42		
	3.7 From Constructal Principle to Internal Structure	44		
	3.8 Cracks in Shrinking Solids	45		

VIII CONTENTS

		BLEMS GRENCES	49 50
4	НЕА	T T R E E S	52
	4.1	The Volume-to-Point Flow Problem	52
	4.2	Elemental Volume	53
	4.3	First Construct and Growth	56
	4.4	Second and Higher-Order Constructs	58
	4.5	Constructal Law	60
	4.6	Tapered Channels and Optimal Angles	62
	4.7	Three-Dimensional Heat Trees	65
	4.8	Time-Dependent Discharge from a Volume to One Point	67
	4.9	Constructal Design: Increasing Complexity in a Volume of	
		Fixed Size	69
	4.10	Design with Unrestricted Elemental Features	74
	4.11	Constructal Heat Trees Are Robust	77
	PRO	BLEMS	79
	RE	FERENCES	80
5	FLUI	D T R E E S	82
	5.1	Bathing a Volume: Objective and Constraints	82
	5.2	Elemental Volume	84
	5.3	First and Higher-Ordir Constructs	88
	5.4		91
		Optimization of Void-Space Distribution	92
	5.6	Constructal Design: Increasing Complexity in a Volume of	
		Fixed Size	94
	5.7	Three-Dimensional Fluid Trees	99
	5.8	Scaling Laws of Living Trees	108
	PRO	BLEMS	113
	REF	ERENCES	115
6	D u c	TS AND RIVERS	117
		Geometric Puzzles	117
	6.2	Optimal River Channel Cross Sections	122
	6.3	Optimal Duct Cross Sections	127
	6.4	Deterministic River Drainage Basins	128
	6.5	River Basins with Randomly Distributed Resistance to Erosion	137
	6.6	River Basins with Optimized External Shape	137
	6.7	Constructal Fluid Trees are Robust	142
	6.8	Rivers of People	144
		BLEMS	145
		ERENCES	147
7	Tur	BULENT STRUCTURE	149
	7.1	Two Flow Regimes: High Resistance and Low Resistance,	
		Intertwined	149

CONTENTS ix

	Why Do Icebergs and Logs Drift Sideways?	150
		151
		157
	The Onset of Rolls in Fluid Layers Heated from Below	158
	Partitioned Fluid Layer Heated from the Side	161
	Optimization of Flow Geometry in Layers Heated from Below	163
	Porous Layer Saturated with Fluid and Heated from Below	169
	Natural Structure in Multiphase Flow Systems	174
	0 Dendritic Crystals	175
	DBLEMS	178
	FERENCES	179
8 (IVECTIVE TREES	181
	Convection in the Interstices versus Convection	
	in the Tree Branches	181
	Two-Dimensional T-Shaped Plate Fins	182
	Umbrellas of Cylindrical Fins	187
	Fin Trees with Optimal Plate-to-Plate Spacings	189
		['] 198
	Conduction in Interstitial Spaces and Convection in Channels	202
	Parallel-Plate Channels	203
	Optimally Tapered Parallel-Plate Channels	208
	Round Tubes	212
	0 Two Fluid Trees in Counterflow are One Tree for Convection	215
	OBLEMS	216
	FERENCES	218
9 :	UCTURE IN POWER SYSTEMS	219
	Allocation of Heat Exchange Inventory	220
	2 Distribution of Insulation	223
	3 Structure in Low-Temperature Machines	226
	4 Streams in Counterflow	230
	Flying Machines and Animals	234
	Flying Carpets and Processions	240
	OBLEMS	242
	FERENCES	244
10	RUCTURE IN TIME: RHYTHM	246
	0.1 Intermittent Heat Transfer	247
	0.2 Defrosting Refrigerators	249
	0.3 Cleaning Power Plants	252
	0.4 Breathing	254
	0.5 Heart Beating	257
	0.6 The Effect of Animal Body Size	260
	COBLEMS	267
	TEEDENCES	268

X CONTENTS

11 Transportation and Economics Structure	270
11.1 Minimum Travel Time	271
11.2 Minimum Cost	278
11.3 Maximum Revenue	283
11.4 Development of Economics Structure in Time	287
11.5 Optimally Shaped Triangular Areas	288
11.6 Older Methods in Spatial Economics	293
11.7 The Law of Refraction	295
11.8 The Law of Parsimony	296
PROBLEMS	297
REFERENCES	298
12 Shapes with Constant Resistance	300
12.1 How, Not What	300
12.1 11011, 1101 111111	
12.2 More Degrees of Freedom	301
·	301 308
12.2 More Degrees of Freedom	
12.2 More Degrees of Freedom12.3 More Efficient Structures Look More "Natural"	308
12.2 More Degrees of Freedom12.3 More Efficient Structures Look More "Natural"12.4 More Material Where the Need is Greater	308 311
 12.2 More Degrees of Freedom 12.3 More Efficient Structures Look More "Natural" 12.4 More Material Where the Need is Greater 12.5 An Old and Prevalent Natural Phenomenon 	308 311 312
 12.2 More Degrees of Freedom 12.3 More Efficient Structures Look More "Natural" 12.4 More Material Where the Need is Greater 12.5 An Old and Prevalent Natural Phenomenon REFERENCES 	308 311 312 314