Contents

	Pref	ace	xvii
Ţ	Intro	duction	I
	1.1	Linear representation of multivariate data	1
		I. I. I The general statistical setting	1
		1.1.2 Dimension reduction methods	2
		I. I.3 Independence as a guiding principle	3
	1.2	Blind source separation	3
		1.2.1 Observing mixtures of unknown signals	4
		1.2.2 Source separation based on independence	5
	1.3	Independent component analysis	6
		1.3.1 Definition	6
		1.3.2 Applications	7
		1.3.3 How to find the independent components	7
	1.4	History of ICA	11

Part I MATHEMATICAL PRELIMINARIES

2	Kana	iom vec	tors ana inaepenaence	13
	2.1	Proba	bility distributions and densities	15
		2.1.1	Distribution of a random variable	15
		2.1.2	Distribution of a random vector	17
		2.1.3	Joint and marginal distributions	18
	2.2	Expec	tations and moments	19
		2.2.1	Definition and general properties	19
		2.2.2	Mean vector and correlation matrix	20
		2.2.3	Covariances and joint moments	22
		2.2.4	Estimation of expectations	24
	2.3	Uncor	rrelatedness and independence	24
		2.3.1	Uncorrelatedness and whiteness	24
		2.3.2	Statistical independence	27
	2.4		itional densities and Bayes' rule	28
	2.5		ultivariate gaussian density	31
			operties of the gaussian density	32
		2.5.2	Central limit theorem	34
	2.6	Densi	ty of a transformation	35
			-order statistics	36
		2.7.1		37
		2.7.2		40
	2.8	Stoch	astic processes *	43
		2.8.1	•	43
		2.8.2	· ·	45
		2.8.3	Wide-sense stationary processes	46
		2.8.4	Time averages and ergodicity	48
		2.8.5	Power spectrum	49
		2.8.6		50
	2.9	Conc	luding remarks and references	51
		Probl	v	52
3	Cua	diants a	and Ontimization Mathods	57
J	3.1		and Optimization Methods or and matrix gradients	57 57
	J.I	3.1.1	e e e e e e e e e e e e e e e e e e e	57 57
			e e e e e e e e e e e e e e e e e e e	59 59
		3.1.2	8	59 59
		3. I .3	Examples of gradients	35

		CONTENTS	Vii
		3.1.4 Taylor series expansions	62
	3.2	Learning rules for unconstrained optimization	63
		3.2.1 -Gradient descent	63
		3.2.2 Second-order learning	65
		3.2.3 The natural gradient and relative gradient	67
		3.2.4 Stochastic gradient descent	68
		3.2.5 Convergence of stochastic on-line algorithms *	71
	3.3	Learning rules for constrained optimization	73
		3.3.1 The Lagrange method	73
		3.3.2 Projection methods	73
	3.4	Concluding remarks and references	75
		Problems	75
1	Estim	ation Theory	77
	4.1	Basic concepts	78
	4.2	Properties of estimators	80
	4.3	Method of moments	84
	4.4	'Least-squares estimation	86
		4.4.1 Linear least-squaresmethod	86
		4.4.2 Nonlinear and generalized least squares *	88
	4.5	Maximum likelihood method	90
	4.6	Bayesian estimation *	94
		4.6.1 Minimum mean-square error estimator	94
		4.6.2 Wiener filtering	96
		4.6.3 Maximum a posteriori (MAP) estimator	97
	4.7	Concluding remarks and references	99
		Problems	101
15	5 Info	rmation Theory	105
	5.1	Entropy	105
		5.1.1 Definition of entropy	105
		5.1.2 Entropy and coding length	107
		5.1.3 Differential entropy	108
		5.1.4 Entropy of a transformation	109
	5.2	Mutual information	110
		5.2.1 Definition using entropy	110
		5.2.2 Definition using Kullback-Leibler divergence	110

VIII CONTENTS

	5.3	Maxim	um entropy	111
		5.3.1	Maximum entropy distributions	111
		5.3.2	Maximality property of gaussian distribution	112
	5.4	Negen 1	tropy	112
	5.5	Approx	imation of entropy by cumulants	113
		5.5.1	Polynomial density expansions	113
		5.5.2	Using expansions for entropy approximation	114
	5.6	Approx	cimation of entropy by nonpolynomial functions	115
		5.6.1	Approximating the maximum entropy	116
		5.6.2	Choosing the nonpolynomial functions	117
		5.6.3	Simple special cases	118
		5.6.4	Illustration	119
	5.7	Conclu	uding remarks and references	120
		Proble	ms	121
		Appena	dix proofs	122
6	Prin 6. I	-	mponent Analysis and Whitening val components	125 125
	<i>6. I</i>	_	_	123 127
		6.1.1 6.1.2	PCA by variance maximization PCA by minimum MSE compression	128
		6.1.3	Choosing the number of principal components	129
		6.1.4	Closed-form computation of PCA	131
	6.2		y on-line learning	131
	0.2	6.2.1	The stochastic gradient ascent algorithm	133
		6.2.2		134
		6.2.3		135
		6.2.4	PCA and back-propagation learning *	136
		6.2.5	Extensions of PCA to nonquadratic criteria *	137
	6.3		analysis	138
	6.4	Whiten	•	140
			onalization	141
	6.6		uding remarks and references	143
		Proble	· ·	144

Part II BASIC INDEPENDENT COMPONENT ANALYSIS

7	Wha	t is Independent Component Analysis?	147
	7.1	Motivation	147
	7.2	Definition of independent component analysis	151
		7.2.1 ICA as estimation of a generative model	151
		7.2.2 Restrictions in ICA	152
		7.2.3 Ambiguities of ICA	154
		7.2.4 Centering the variables	154
	7.3	Illustration of ICA	155
	7.4	ICA is stronger that whitening	158
		7.4.1 Uncorrelatedness and whitening	158
		7.4.2 Whitening is only half ICA	160
	7.5	Why gaussian variables are forbidden	161
	7.6	Concluding remarks and references	163
		Problems	164
8	ICA	by Maximization of Nongaussianity	165
	8.1	"Nongaussian is independent,"	166
	8.2	Measuring nongaussianity by kurtosis	171
		8.2.1 Extrema give independent components	171
		8.2.2 Gradient algorithm using kurtosis	175
		8.2.3 A fast fixed-point algorithm using kurtosis	178
		8.2.4 Examples	179
	8.3	Measuring nongaussianity by negentropy	182
		8.3.1 Critique of kurtosis	182
		8.3.2 Negentropy as nongaussianity measure	182
		8.3.3 Approximating negentropy	183
		8.3.4 Gradient algorithm using negentropy	185
		8.3.5 A fast fixed-point algorithm using negentropy	188
	8.4	Estimating several independent components	192
		8.4. I Constraint of uncorrelatedness	192
		8.4.2 Deflationary orthogonalization	194
		8.4.3 Symmetric orthogonalization	194
	8.5	ICA and projection pursuit	197
		8.5.1 Searching for interesting directions	197
		8.5.2 Nongaussian is interesting	197
	8.6	Concluding remarks and references	198
		*	

X CONTENTS

Problems	199
Appendix proofs	201
9 ICA by Maximum Likelihood Estimation	203
9.1 The likelihood of the ICA model	203
9.1.1 Deriving the likelihood	203
9.1.2 Estimation of the densities	204
9.2 Algorithms for maximum likelihood estimation	207
9.2.1 Gradient algorithms	207
9.2.2 A fast fixed-point algorithm	209
9.3 The infomax principle	211
9.4 Examples	213
9.5 Concluding remarks and references	214
Problems	218
Appendix proofs	219
10 ICA by Minimization of Mutual Information	221
10.1 Defining ICA by mutual information	221
10.1.1 Information-theoretic concepts	221
10.1.2 Mutual information as measure of depe	endence 222
10.2 Mutual information and nongaussianity	223
10.3 Mutual information and likelihood	224
10.4 Algorithms for minimization of mutual informa	ation 224
10.5 Examples	225
10.6 Concluding remarks and references	225
Problems	227
11 ICA by Tensorial Methods	229
1 I. 1 Definition of cumulant tensor	229
11.2 Tensor eigenvalues give independent compone	ents 230
11.3 Tensor decomposition by a power method	232
11.4 Joint approximate diagonalization of eigenma	trices 234
11.5 Weighted correlation matrix approach	23:
11.5.1 The FOBI algorithm	23:
11.5.2 From FOBI to JADE	23.
11.6 Concluding remarks and references.	230
Problems	23

12	ICA l	by Nonlinear Decorrelation and Nonlinear PCA	239
	12.1	Nonlinear correlations and independence	240
	12.2	The Hérault-Jutten algorithm	242
	12.3	The Cichocki-Unbehauen algorithm	243
	12.4	The estimatingfunctions approach *	245
	12.5	Equivariant adaptive separation via independence	247
	12.6	Nonlinear principal components	249
	12.7	The nonlinear PCA criterion and ICA	251
	12.8	Learning rules for the nonlinear PCA criterion	254
		12.8.1 The nonlinear subspace rule	254
		12.8.2 Convergence of the nonlinear subspace rule *	255
		12.8.3 Nonlinear recursive least-squares rule	258
	12.9	Concluding remarks and references	261
		Problems	262
1:3	Prac	tical Considerations	263
	13.1	Preprocessing by time filtering	263
		13.1.1 Why time filtering is possible	264
		13.1.2 Low-pass filtering	265
3/6		13.1.3 High-pass filtering and innovations	265
		13.1.4 Optimalfiltering	266
	13.2	Preprocessing by PCA	267
		13.2.1 Making the mixing matrix square	267
		13.2.2 Reducing noise and preventing overlearning	268,
	13.3	How many components should be estimated?	269
	13.4	Choice of algorithm	271
	13.5	Concluding remarks and references	272
		Problems	272
14	Over	view and Comparison of Basic ICA Methods	273
	14.1	Objective functions vs. algorithms	273
	14.2	Connections between ICA estimation principles	274
		14.2.1 Similarities between estimation principles	274
		14.2.2 Differences between estimation principles	275
	14.3	Statistically optimal nonlinearities	276
		14.3.1 Comparison of asymptotic variance *	276
		14.3.2 Comparison of robustness ₩	277
		14.3.3 Practical choice of nonlinearity	279

xii CONTENTS

14.4	14.4.1 Experimental set-up and algorithms 14.4.2 Results for simulated data 14.4.3 Comparisons with real-world data	280 281 282 286
14.5	References	287
	Summary of basic ICA	287
	Appendix Proofs	289
Part III	EXTENSIONS AND RELATED METHODS	
15 Noisy		293
	Definition	293
	Sensor noise vs. source noise	294
	Few noise sources	295
15.4	Estimation of the mixing matrix	295
	15.4.1 Bias removal techniques	296
	15.4.2 Higher-order cumulant methods	298
	15.4.3 Maximum likelihood methods	299
15.5	Estimation of the noise-free independent components	299
	15.5.1 Maximum a posteriori estimation	299
	15.5.2 Special case of shrinkage estimation	300
15.6	Denoising by sparse code shrinkage	30.
15.7	Concluding remarks	304
16 ICA	with Overcomplete Bases	30.
16.1		300
	16.1.1 Maximum likelihood estimation	30
	16.1.2 The case of supergaussian components	30
16.2	1 0 1	30
	16.2.1 Maximizing joint likelihood	30
	16.2.2 Maximizing likelihood approximations	30
	16.2.3 Approximate estimation by quasiorthogonality	30
	16.2.4 Other approaches	31.

16.3 Concluding remarks

311

313

CONTENTS	xiii
17 Nonlinear ICA	315
17.1 Nonlinear ICA and BSS	315
17.1.1 The nonlinear ICA and BSS problems	315
17.1.2 Existence and uniqueness of nonlinear ICA	317
17.2 Separation of post-nonlinear mixtures	319
17.3 Nonlinear BSS using self-organizing maps	320
17.4 A generative topographic mapping approach *	322
17.4.1 Background	322
17.4.2 The modified GTM method	323
17.4.3 An experiment	326
17.5 An ensemble learning approach to nonlinear BSS	328
17.5.1 Ensemble learning	328
17.5.2 Model structure	329
17.5.3 Computing Kullback-Leibler cost function *	330
17.5.4 Learning procedure *	332
17.5.5 Experimental results	333
17.6 Other approaches	337
17.7 Concluding remarks	339
18 Methods using Time Structure	341
18.1 Separation by autocovariances	342
18.1.1 An alternative to nongaussianity	342
18.1.2 Using one time lag	343
18.1.3 Extension to several time lags	344
18.2 Separation by nonstationarity of variances	346
18.2.1 Using local autocorrelations	347
18.2.2 Using cross-cumulants	349
18.3 Separation principles unified	351
18.3.1 Comparison of separation principles	351
18.3.2 Kolmogoroff complexity as unifying framework	352
18.4 Concluding remarks	354

xiv CONTENTS

19	Conv	olutive Mixtures and Blind Deconvolution		355
	19.1	Blind deconvolution		356
		19.1. 1 Problem definition		356
		19.1.2 Bussgang methods		357
		19.1.3 Cumulant-based methods		358
		19.1.4 Blind deconvolution using linear ICA		360
	19.2	Blind separation of convolutive mixtures		361
		19.2.1 The convolutive BSS problem		361
		19.2.2 Reformulation as ordinary ICA		363
		19.2.3 Natural gradient methods		364
		19.2.4 Fourier transform methods		365
		19.2.5 Spatiotemporal decorrelation methods		367
		19.2.6 Other methods for convolutive mixtures		367
	19.3	Concluding remarks		368
		Appendix Discrete-time filters and the z-transform		369
20	Otha	r Extensions		271
20				371
	20.1	G		371
		20.1.1 Motivation for prior information 20.1.2 Classic priors		371
		1		372
		20.1.3 Sparse priors		374
	20.2	20.1.4 Spatiotemporal ICA Relaxing the independence assumption		377
	20.2	20.2.1 Multidimensional ICA		<i>378</i>
		20.2.2 Independent subspace analysis		<i>379 380</i>
		20.2.2 Independent subspace analysis 20.2.3 Topographic ICA		382
	20.3	Complex-valued data		383
	20.3	20.3.1 Basic concepts of complex random variables	,	383
		20.3.2 Indeterminacy of the independent componen		384
			ıs	385 385
		20.3.3 Choice noting the sianity measure 20.3.4 Consistency of estimator		386
		20.3.5 Fixed-point algorithm		386
		20.3.6 Relation to independent subspaces		387
	20.4	Concluding remarks		387 387
	20.7	Concenting remains		20/

Part IV APPLICATIONS OF ICA

21	Featu	re Extraction by ICA	391
	21.1	Linear representations	392
		21.1.1 Definition	392
		21.1.2 Gabor analysis	392
		21.1.3 Wavelets	394
	21.2	ICA and Sparse Coding	396
	21.3	Estimating ICA bases from images	398
	21.4	Image denoising by sparse code shrinkage	398
		21.4.1 Component statistics	399
		21.4.2 Remarks on windowing	400
		21.4.3 Denoising results	401
	21.5	Independent subspaces and topographic ICA	401
	21.6	Neurophysiological connections	403
	21.7	Concluding remarks	405
22	Brain	Imaging Applications	407
	22.1	Electro- and magnetoencephalography	407
		22.1.1 Classes of brain imaging techniques	407
		22.1.2 Measuring electric activity in the brain	408
		22.1.3 Validity of the basic ICA model	409
		Artifact identification from EEG and MEG	410
	22.3	Analysis of evoked magnetic fields	411
	22.4	ICA applied on other measurement techniques	413
	22.5	Concluding remarks	414
2.5	3 Tele	communications	417
	23.1	Multiuser detection and CDMA communications	417
	23.2	CDMA signal model and ICA	422
	23.3	Estimating fading channels	424
		23.3.1 Minimization of complexity	424
		23.3.2 Channel estimation *	426
		23.3.3 Comparisons and discussion	428
	23.4	Blind separation of convolved CDMA mixtures *	430
		23.4.1 Feedback architecture	430
		23.4.2 Semiblind separation method	431
		23.4.3 Simulations and discussion	432

xvi CONTENTS

135
136
138
139
141
<i>141</i>
441
443
446
448
449
476