TABLE OF CONTENTS

PAGES

1.	MICHELSON'S INTERFERENCE EXPERIMENT. By H. A. Lorentz . §1. The experiment. §2. The contraction hypothesis. §§3-4. The contraction in relation to molecular forces	PAGES 1-7
II.	ELECTROMAGNETIC PHENOMENA IN A SYSTEM MOVING WITH ANY	
	 VELOCITY LESS THAN THAT OF LIGHT. By H. A. Lorentz. § 1. Experimental evidence. § 2. Poincaré's criticism of the contraction hypothesis. § 3. Maxwell's equations for 	9-34
	moving axes. § 4. The modified vectors. § 5. Retarded potentials. § 6. Electrostatic fields. § 7. A polarized particle. § 8. Corresponding states. § 9. Momentum of an electron. § 10. The influence of the earth's motion on optical phenomena. § 11. Applications. § 12. Molecular motions. § 13. Kaufmann's experiments.	
111.	ON THE ELECTRODYNAMICS OF MOVING BODIES. By A. Einstein. KINEMATICAL PART. § 1. Definition of simultaneity. § 2. On the relativity of lengths and times. § 3. The transforma- tion of co-ordinates and times. § 4. Physical meaning of the equations. § 5. The composition of velocities. ELECTRODYNAMICAL PART. § 6. Transformation of the Max	35-65
£10-	well-Hertz equations. § 7. Doppler's principle and aber- ration. § 8. The energy of light rays and the pressure of radiation. § 9. Transformation of the equations with convection currents. § 10. Dynamics of the slowly accel- erated electron.	
IV.	DOES THE INERTIA OF A BODY DEPEND UPON ITS ENERGY-	NO XI
v . :	SPACE AND TIME. By H. Minkowski	67-71
	I. The invariance of the Newtonian equations and its represen- tation in four dimensional space. II. The world-postulate. III. The representation of motion in the continuum. IV. The new mechanics. V. The motion of one and two electrons.	73-91
VI. C	Notes on this paper. By A. Sommerfeld	92-96
	LIGHT. By A. Einstein § 1. The physical nature of gravitation. § 2. The gravitation of energy. § 3. The velocity of light. § 4. Bending of light-rays.	97-108

viii THE PRINCIPLE OF RELATIVITY

PAGES

VII. THE FOUNDATION OF THE GENERAL THEORY OF RELATIVITY. BY A. Einstein

109-164

- A FUNDAMENTAL CONSIDERATIONS ON THE POSTULATE OF RELA-TIVITY. 1. Observations on thespecial theory. § 2. The need for an extension of the postulate of relativity. 3. The space-time continuum; general co-variance. § 4. Measurement in Space and Time.
- **B.** MATHEMATICAL AIDS **TO** THE FORMULATION OF GENERALLY COVARIANT EQUATIONS. § 5. Contravariant and covariant four-vectors. 6. Tensors of the second and higher ranks. 7. Multiplication of tensors. 8. The fundamental tensor $g_{\mu\nu}$ 9. The equation of the geodetic line. § 10. The formation of tensors by differentiation. 11. Some cases of special importance. 12. The Riemann-Christoffel tensor.
- C. THEORY OF THE **GRAVITATIONAL** FIELD. § 13. Equations of motion of a material point. 14. The field equations of gravitation in the absence of matter. § 15. The **Hamiltonianl** function for the gravitational field. Laws of momentum and energy. §16] The general form of the field equations. 17. The laws of conservation. 18. The laws of momentum and energy.
- D. MATERIAL PHENOMENA. 19. Euler's equations for a fluid. 20. Maxwell's equations for free space.
- E. APPLICATIONS OF THE THEORY. 21. Newton's theory as a first approximation. 22. Behaviour of rods and clocks in a static gravitational field. Bending of light rays. Motion of the perihelion of a planetary orbit.
- VIII. HAMILTON'S PRINCIPLE AND THE GENERAL THEORY OF RELA TIVITY. By A. Einstein
 - The principle of variation and the 'field-equations. 2. Separate existence of the gravitational field. 3. Properties of the field equations conditioned by the theory of invariants.

IX. COSMOLOGICAL CONSIDERATIONS ON THE GENERAL THEORY OF RELATIVITY. By A. Einstein

- X. DO GRAVITATIONAL FIELDS PLAY AN ESSENTIAL PART IN THE STRUCTURE OF THE ELEMENTARY PARTICLES OF MATTER? By A. Einstein
 - Defects of the present 2 The field equations freed of scalars. 3 3. On the cosmological question. 4. Concluding remarks.
- XI. GRAVITATION AND ELECTRICITY. By H. Weyl 200-216

. 165-173

ed n-

189-198