Contents

Preface to first editionxiiiPreface to second editionxv

Chapter I	The general problem of the stability of microstructure I
1.1	Introduction 1
I.2	Driving forces for microstructural change – reduction of free energy 6
1.3	Mechanisms of microstructural change – rate controlling step 12
I.4	Quantitative microscopy 27
Chapter 2	Structural instability due to chemical free energy 28
2.1	Instability due to non-uniform solute distribution 28
2.1.1	Thermodynamics of diffusion 28
2.1.2	Modified diffusion equation in the presence of a Kirkendall effect 35
2.1.3	The origin of non-uniform solid solutions – coring or interdendritic segregation 39
2.1.4	Homogenisation of segregation in cast alloys 41
2.1.5	Homogenisation above the non-equilibrium melting
	temperature 44

2.1.6	Deformation of segregated alloys and its effect
	on homogenisation 46
2.1.7	Banding in rolled steels 50
2.2	Nucleation of precipitates from supersaturated
	solid solution 51
2.2.1	Spinodal decomposition 51
2.2.2	Homogeneous nucleation 55
2.2.3	Heterogeneous nucleation 57
2.2.4	The formation of transition phases 60
2.2.5	Trace element effects 63
2.3	Growth of precipitates from supersaturated
	solid solution 64
2.3.1	Diffusion controlled growth 65
2.3.2	Growth kinetics of grain boundary phases 69
2.3.3	Growth kinetics of Widmanstätten plates 71
2.3.4	Formation of misfit dislocations at interphase boundaries 72
2.4	Second-phase dissolution 77
2.4. I	Diffusion limited dissolution 78
2.4.2	Interface reaction kinetics 80
2.4.3	Precipitate arrays 82
2.4.4	Application of the theory 82
Chapter	Highly metastable alloys 84
3.1	Manufacturing methods 85
3.1.1	Rapid solidification 85
3.1.2	Cooling rate and undercooling 87
3.1.3	Condensation, chemical reaction and mechanical
5 5	disruption 91
32	Metastable phase diagrams 94
3.2.1	T_{\circ} lines 94
3.2.2	Submerged phases and transformations 95
3.2.3	Glass transition temperature 99
3.3	Metastable crystalline phases 106
3.3.1	Microcrystalline and nanocrystalline alloys 106
3.3.2	Segregation and supersaturated solid solutions 108
3.3.3	Metastable crystalline and quasicrystalline compounds 114
3.4	Amorphous alloys 121
3.4.1	Formation of amorphous alloys 121

3.4.2	Amorphous alloy structure 126
3.4.3	Atomic mobility and relaxation 132
3.4.4	Crystallisation 138
Chapter 4	Instability due to strain energy 147
4.1	The stored energy of cold work 147
4.I.I	Changes in thermodynamic functions resulting
	from deformation 147
4.1.2	Measurement of the stored energy of cold work 149
4.1.3	Mechanisms for the storage of energy 151
4.1.4	Variables affecting the stored energy 156
4.2	Recovery 166
4.2. т	The kinetics of recovery 166
4.2.2	Mechanisms of recovery 168
4.3	Recrystallisation 183
4.3.1	Kinetics of recrystallisation 183
4.3.2	Nucleation of recrystallisation 188
4.3.3	Growth of new grains in recrystallisation 192
4.3.4	The recrystallisation of two-phase alloys 202
Chapter 5	Microstructural instability due to interfaces 219
5.4	Introduction 219
5.2	Surface energy and surface tension $-\sigma$ 220
5.3	Atomic origin of the interfacial free energy 228
5.4	The anisotropy of surface free energy – the on plot and the Gibbs-Wulff theorem 231
5.4.1	Faceting 237
5.5	Precipitate coarsening: 'Otswald ripening' 239
5.5.1	Interfacial free energy 241
5.5.2	The mechanism and kinetics of Ostwald ripening 243
5.5.3	Lattice diffusion – the rate controlling process 251
5.5.4	Interface kinetics: atom transfer across the interface as
	the rate controlling step 259
5.5.5	Ripening of precipitates on grain boundaries 260
5.5.6	Ripening of precipitates on low angle (dislocation)
	boundaries 262
5.5.7	Effect of volume fraction on coarsening rates 263
5.5.8	Onset of the coarsening reaction 266

5.5.9	The coarsening reaction in ternary and higher
	order alloys 270
5.6	Experimental investigations of precipitate coarsening 271
5.6. і	Coarsening of spherical or near spherical precipitates 272
5.6.2	Coarsening of non-spherical precipitates 287
5.6.3	Coarsening kinetics suggesting substructure enhanced
	diffusion 290
5.6.4	Some applications of the coarsening theory 293
5.6.5	Systems that resist coarsening 295
5.6.6	General conclusions on particle coarsening 297
5.7	Stability of lamellar or fibrous microstructures 298
5.7.∎	Rod or fibrous eutectics 298
5.7.2	Lamellar eutectics 300
5.7.3	Experimental observations of coarsening fibrous
	eutectic microstuctures 302
5.7.4	Observations of coarsening of lamellar eutectics 303
5.7.5	Effect of stress and strain on the stability of eutectic
	microstructures 304
5.7.6	Discontinuous coarsening of polycrystalline lamellar
	structures 306
5.8	Microstructural change due to grain boundary energies 307
5.8.1	Normal grain growth 307
5.8.2	Computer modelling of grain growth 316
5.8.3	Experimental results 322
5.8.4	Influence of a dispersed secondphase on grain growth326
5.8.5	Abnormal grain growth 346
5.8.6	Dragging of particles by moving grain boundaries 362
5.9	Dendrite arm coarsening 366
Chapte I o	Other causes of microstructural instability 367
6.1	Introduction 367
6.2	Migration of second-phase inclusions in a
	temperature gradient 368
6.2.1	Migration of liquid inclusions 371
6.2.2	Interaction of migrating inclusions with grain
	boundaries 376
6.2.3	Shape stability of migrating liquid inclusions 377
6.2.4	Migration of gas bubbles 378

Contents

6.2.5	Migration of two-phase (liquid and vapour) inclusions 380
6.2.6	Migration of solidphases 383
6.2.7	The Soret effect: thermal migration of atoms in a
	temperature gradient 383
6.3	Migration in a gravitational (acceleration) field 384
6.4	Migration in an electric field – electromigration 385
6.4. т	Migration of grain boundaries under the influence
	of an electric field 386
6.5	Effect of magnetic fields on metallic microstructure 387
6.5.1	Effect of magnetic fields on the orientation of
	microstructural features 387
6.5.2	Phase transformations in a magnetic field 390
6.6	Deformation 391
6.6. т	Effect of plastic deformation andfatigue loading on
	metastable precipitates 391
6.6.2	Enhancement of dislocation recovery by fatigue strain 397
6.6.3	Stress annealing 397
6.6.4	Changes in precipitate distribution during diffusion creep 399
6.7	Precipitate stability under irradiation 401

 References
 403

 Index
 423