Contents

Prefac	te to the English Editionv
Prefac	ce to the Second German Editionvi
Prefa	ce to the First German Editionvii
Histor	ical Introduction
Chron	ological Table6
Part	A. Elements of Function Theory
Chap	eter 0. Complex Numbers and Continuous Functions
	The field $\mathbb C$ of complex numbers
3. C	5. Compact sets Convergent sequences of complex numbers
4. (Convergent and absolutely convergent series

xii CONTENTS

 Continuous functions
 Connected spaces. Regions in Cl
Chapter 1. Complex-Differential Calculus
1. Complex-differentiable functions
 Complex and real differentiability
3. Holomorphic functions
§4. Partial differentiation with respect to x,y,z and \bar{z}
Chapter 2. Holomorphy and Conformality. Biholomorphic Mappings 71
 Holomorphic functions and angle-preserving mappings
2. Biholomorphic mappings

3. Automorphisms of the upper half-plane and the unit disc
Chapter 3. Modes of Convergence in Function Theory91
1. Uniform, locally uniform and compact convergence
2. Convergence criteria
3. Normal convergence of series
Chapter 4. Power Series
1. Convergence criteria
2. Examples of convergent power series
3. Holomorphy of power series
4. Structure of the algebra of convergent power series

xiv CONTENTS

Chapter 5. Elementary Transcendental Functions
 The exponential and trigonometric functions
§2. The epimorphism theorem for $\exp z$ and its consequences 141 1. Epimorphism theorem — 2. The equation $\ker(\exp) = 2\pi i \mathbb{Z}$ — 3. Periodicity of $\exp z$ — 4. Course of values, zeros, and periodicity of $\cos z$ and $\sin z$ — 5. Cotangent and tangent functions. Arctangent series — 6. The equation $e^{i\frac{\pi}{2}} = i$
 Polar coordinates, roots of unity and natural boundaries 148 Polar coordinates — 2. Roots of unity — 3. Singular points and natural boundaries — 4. Historical remarks about natural boundaries
 4. Logarithm functions
5. Discussion of logarithm functions
Part B. The Cauchy Theory
Chapter 6. Complex Integral Calculus
Integration over real intervals
§1. Path integrals in \mathbb{C}
 Properties of complex path integrals

CONTENTS xv

 3. Path independence of integrals. Primitives
Chapter 71 The Integral Theorem , Integral Formula and Power Serie Development
1. The Cauchy Integral Theorem for star regions
2. Cauchy's Integral Formula for discs
3. The development of holomorphic functions into power series 20 1. Lemma on developability — 2. The Cauchy-Taylor representation theorem — 3. Historical remarks on the representation theorem — 4. The Riemann continuation theorem — 5. Historical remarks on the Riemann continuation theorem
4. Discussion of the representation theorem
5. Special Taylor series. Bernoulli numbers
Part C. Cauchy-Weierstrass-Riemann Function Theory
Chapter 8. Fundamental Theorems about Holomorphic Functions 22
1. The Identity Theorem

xvi CONTENTS

1. Holomorphy, local integrability and convergent power series — 2. The holomorphy of integrals — 3. Holomorphy, angle- and orientation-preservation (final formulation) — 4. The Cauchy, Riemann and Weierstrass point of view. Weierstrass' creed
3. The Cauchy estimates and inequalities for Taylor coefficients 241 1. The Cauchy estimates for derivatives in discs — 2. The Gutzmer formul and the maximum principle — 3. Entire functions. Liouville's theorem — 4. Historical remarks on the Cauchy inequalities and the theorem of Liouville — 5*1 Proof of the Cauchy inequalities following WeierStrass.
4. Convergence theorems of WEIERSTRASSE
 The open mapping theorem and the maximum principle25 Open Mapping Theorem — 2. The maximum principle — 3. On the history of the maximum principle — 4. Sharpening the WeierSTRzas convergence theorem — 5. The theorem of Hurwitz
Chapter 9. Miscellany
1. The fundamental theorem of algebra
 The fundamental theorem of algebra
 The fundamental theorem of algebra

CONTENTS xvii

1. T	eral Cauchy theory
1. D exist	ptotic power series developments
Chapter .	10. Isolated Singularities. Meromorphic functions 303
1. R pole	ted singularities
1. Is and	morphisms of punctured domains
1. E phic	omorphic functions
Chapter	11. Convergent Series of Meromorphic functions
1. Gene	eral convergence theory
3. E	Examples
1. $\varepsilon_1(z)$ 3. H	e partial fraction development of $\pi \cot \pi z$

xv1111 CONTENTS

§3. The Euler formulas for $\sum_{\nu\geq 1} \nu^{-2n}$
§4*. The EISENSTEIN theory of the trigonometric functions
Chapter 12. Laurent Series and Fourier Series
1. Holomorphic functions in annuli and Laurent series
2. Properties of Laurent series
 3. Periodic holomorphic functions and Fourier series
4. The theta function
Chapter 13. The Residue Calculus
1. The residue theorem
§2. Consequences of the residue theorem

CONTENTS	3713
	XIX

Chapter 14 Definite Integrals and the Residue Calculus
§1. Calculation of integrals
§2. Further evaluation of integrals
§3. Gauss sums
J_∞ o uo v. u realter series el che realter per l'annue
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and Weierstrass
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and WEIERSTRASS
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and Weierstrass
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and Weierstrass
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and Weierstrass
Short Biographies of Abel, Cauchy, Eisenstein, Euler, Riemann and Weierstrass