P.Confents

Table of Contents

Break-Dokinet Polymebation Througe and J. S. S.
Ganonical Arandorination Station Througe and J. S. S.
Phonon Dreading colors and more transmitted. A S.
Phonon Dreading colors and accelerate transmit. J. S.
Phonon Dreading colors and accelerate transmitter. J. S.
Phonon Dreading Colors and Acceleration Sciences. J. S.
Noninteracting Blip Approximitation Sciences transmitter. J.

Nearsko NeighboroBBgolitherabtionarics. 201 . 1. 5.1 . . .

1.	Inti	oduct	ion (P. Esquinazi)	1			
	1.1	Tunneling Systems					
	1.2	Conte	nt and Organization of the Book	3			
2.	Hea	t Rele	ease in Solids				
	(A.	Nittke,	S. Sahling, and P. Esquinazi)	9			
	2.1	A Sim	ple System with Two Levels of Energy	9			
	2.2	Pheno	omenological Theory for the Heat Release	12			
		2.2.1	Generalities	12			
		2.2.2	The Standard Tunneling Model	14			
		2.2.3	The Time and Temperature Dependence				
			of the Specific Heat	18			
		2.2.4	Influence of a Finite Number of Tunneling Systems	23			
		2.2.5	Influence of High-Order Tunneling Processes				
			and a Finite Cooling Bate	24			
	2.3	The F	leat Belease Within the Soft-Potential Model	27			
		2.3.1	The Heat Release and Specific Heat	30			
		2.3.2	Influence of Thermal Activation	31			
	2.4	Exper	imental Details	35			
		2.4.1	Quasi-static Measurements	35			
		2.4.2	Calorimetric Measurements	37			
	2.5	Experimental Results					
		2.5.1	The Time Dependence of the Heat Belease	38			
		2.5.2	The Temperature Dependence of the Heat Belease	44			
		2.5.3	Influence of Thermal Activation	45			
		2.5.4	Correlation Between the Heat Belease	10			
		2.0.1	and Other Low-Temperature Properties	54			
	2.6	Concl	usion and Outlook	55			
3.	Cro	ossovei	to Phonon-Assisted Tunneling				
	in	in Insulators and Metals (A. Würger)					
	3.1	Introd	luction	57			

4.

3.2	The Spin-Boson Model	60
3.3	Polaron Transformation and Phonon Dressing	66
	3.3.1 Break-Down of Perturbation Theory	67
	3.3.2 Canonical Transformation	68
	3.3.3 Phonon Dressing	69
	3.3.4 Time Evolution	71
3.4	Crossover to Incoherent Tunneling	71
	3.4.1 Noninteracting Blip Approximation	72
	3.4.2 Nearest-Neighbor Blip Interactions	74
	3.4.3 Time Evolution in NIBA	77
	3.4.4 Two-State Dynamics Beyond NIBA	83
	3.4.5 The Undressing Effect	86
0.7	3.4.6 Discussion	87
3.5	Phonon-Assisted Tunneling in Metals	91
	3.5.1 Blip Expansion for Zero Asymmetry	91
	3.5.2 Concrent Motion	93
	3.5.3 The Incoherent Rate	94
	2.5.4 Quantum Diffusion of Trapped Hydrogen in Nioblum	98
	3.5.6 Resistance Eluctuations of Mesoscopic Wires	100
	3.5.7 Discussion	105
36	Phonon Dressing in Real Systems	103
3.7	Asymmetric Tunneling Systems	110
	3.7.1 Projection Method	1 1
	3.7.2 Approximations.	112
	3.7.3 The Damping Kernel	114
	3.7.4 Crossover to Relaxation	117
	3.7.5 Low Temperatures: $T \ll T^*$	117
	3.7.6 High Temperatures: $T \gg T^*$	118
	3.7.7 How Large is the Maximum Tunnel Energy in Glasses?	119
	3.7.8 Sound Propagation in Amorphous Solids Above 5 K	122
3.8	Two-State Dynamics for Weak Phonon Coupling	125
	3.8.1 Perturbation Series	126
	3.82 Phase Relaxation: $W(z)$	129
	3.8.3 Energy Relaxation: $V(z)$	131
	3.8.4 Discussion.	132
	3.8.5 Mode-Coupling Approximation (MCA)	133
0.0	3.8.6 Comparison of Perturbation Theory and MCA:	136
3.9	Summary	139
Infl	uence of Tunneling Systems on the Acoustic Properties	
of D	Disordered Solids (P. Esquinazi and R. Konig).	145
4.1 A	Acoustic Properties and Tunneling Systems	145
4.2	Theoretical Remarks :	147

2	Theor	etical Remarks	:	147
	4.2.1	Resonant and Relaxation Processes		147

		4.2.2	The Standard Tunneling Model.	
			Relaxation due to Phonons	150
		4.2.3	Relaxation due to Conduction Electrons	154
		4.2.4	Influence of the Acoustic Intensity	161
		4.2.5	'Coherent Coupling Below 100 mK	165
		4.2.6	Acoustic Properties Above 1 K: Thermal Activation	
			and Incoherent Tunneling	166
	4.3	Expe	rimental Details	168
		4.3.1	Experimental Methods for Low and High Frequencies	168
		4.3.2	The Vibrating Reed and Vibrating Wire Techniques	170
		4.3.3	The Influence of the Clamping	174
		4.3.4	Acoustic Experiments at Very Low Temperatures:	
			Cryogenics and Sample Thermalization	176
	4.4	Acou	stic Properties of Amorphous Solids	178
		4.4.1	Dielectrics	178
		4.4.2	Normal-Conducting Amorphous Metals	185
		4.4.3	Superconductors	191
		4.4.4	Influence of Thermal Treatment	
			on the Acoustic Properties of Amorphous Metals	194
		4.4.5	Amorphous Thin Films	197
	4.5	Acou	stic Properties of Polycrystalline Metals	199
		4.5.1	General Remarks	199
		4.5.2	Polycrystalline Superconductors	200
		4.5.3	Normal Metals. The Absence of Electron-Assisted	
			Relaxation in Polycrystals	207
		4.5.4	The Influence of Thermal Treatment	215
		4.5.5	Acoustic Properties of Polycrystals at $T > 1K$	217
	4.6	On tl	he Origin of Tunneling Systems in Disordered Solids:	
		Conc	lusion and Perspective	219
5.	Inte	eracti	ons Between Tunneling Defects	
81	in A	Amor	phous Solids (A. L. Burin, D. Natelson,	
	D. E). Osh	eroff, and Yu. Kagan)	223
		5.0.1	Dielectric and Acoustic Properties	223
		5.0.2	Interaction Effects: Spectral Diffusion and Dephasing .	225
	5.1	Inter	actions and Equilibrium Properties	227
		5.1.1	Standard Tunneling Model Predictions	228
		5.1.2	Interactions Between Tunneling Systems:	
			Spectral Diffusion	234
		5.1.3	Theoretical Approaches to the Relaxation	
			of Tunneling Systems	241
		5.1.4	Many-Body Effects and Collective Excitations	242
		5.1.5	Interaction-Stimulated Relaxation	
			of Tunneling Systems	250

	5.1.6	Equilibrium Acoustic	
		and Dielectric Measurement Techniques	255
	5.1.7	' Equilibrium Acoustic and Dielectric Loss Data	258
	5.1.8	Equilibrium Dielectric Saturation	
		at Very Low Temperatures	261
	5.2 None	quilibrium Effects: Long-Time Relaxations	
	and	the Dipole Gap	263
	5.21	Nonequilibrium Experimental Techniques.	263
	52.2	Experimental Results	267
	5.2.3	Nonequilibrium Behavior: General Remarks	277
	5.2.4	Nonequilibrium Behavior	
		Without Interactions Between Tunneling Systems	278
	5.2.5	Weak Interactions: The Dipole Gap	279
	5.2.6	Discussion of the Experiments	288
	5.2.7	Anomalous Hysteretic Behavior	
		and Ultralow Temperatures	292
	5.3 On t	he Universality of the Low-Temperature Properties	295
	5.3.1	Basic Facts	296
	5.3.2	Significance of $1/R^3$ Interactions	297
	5.3.3	The Renormalization Group Model	299
	5.3.4	A Key Identity.	301
	5.3.5	General Model	304
	5:3.6	Tunneling Motion	309
	5.3.7	Discussion of the Results.	311
	5.4 Con	clusion and Remarks	315
6	Investig	ation of Tunneling Dynamics	
0.	by Ontic	cal Hole-Burning Spectroscopy	
	(II Majer	IB M Kharlamov and D Haarer)	317
	6.1 Intro	De trie financiano V, and D. Hadroff	317
	6.2 Opti	ical Spectra of Impurities in Solids	318
	6.2.1	Crystals.	318
	6.2.2	2 Amorphous Solids	322
	6.3 Basi	c Methods of Hole-Burning Spectroscopy	327
	6.3.1	Introduction	32 7
	6.3.2	2 Experimental Techniques	328
	6.3.3	B Technical Limitations	33 3
	6.4 High-	Barrier Versus Low-Barrier Tunneling	338
	6.4.1	Photochemical Hole Burning	33 🚽
	6.4.2	Nonphotochemical Hole Burning	344
	6.4.3	Hole Burning in a Model System: Benzoic Acid	347
	6.4.4	Conclusion	351
	6.5 Spec	ctral Diffusion: Low-Barrier Tunneling	352
	6.5.1	Spectral Diffusion 11	352
	6.5.2	2 Theoretical Description of Spectral Diffusion	355

		6.5.3	Equilibrium Glass Dynamics	358
		6.5.4 L	Long-Time Equilibrium Dynamics:	
			Nonclassical Distribution of Tunneling States	360
		6.5.5	Nonequilibrium Glass Dynamics	370
	6 i.6	Conclu	sion	38 6
7.	Tu	nneling	g of H and D in Metals and Semiconductors	
	(G.	Cannell	li, R. Cantelli, F. Cordero, and F. Trequattrini) I	389
	7.1	Introd	uction	389
	7.2	Solid S	Solutions of Hydrogen	390
		7.2.1	The bcd Metals V, Nb and Ta	392
		7.2.2	The Rare Earths Sc, Y and Lu	393
		7.2.3	Trapping of Hydrogen by Impurities	394
	7.3	Experi	imental Techniques Revealing the Tunneling	
		of Hyc	drogen	395
		7.3.1	Specific Heat	395
		7.3.2	Acoustic Measurements	396
		7.3.3	Neutron Spectroscopy	406
		7.3.4	Nuclear Magnetic Resonance.	409
	17.4	Long-R	ange Diffusion and Incoherent Hopping	
		of Hyd	drogen in bcd Metals	411
		7.4.1	Theories of Quantum Diffusion	411
		7.4.2	The Gorsky Effect: Long-Range Diffusion	413
		7.4.3	Hopping of Hydrogen near Interstitial Impurities	416
		7.4.4	Hopping of Hydrogen near Substitutional Impurities .	. 418
	7.5	Coher	ent Tunneling and Fast Local Motion of Hydrogen	418
		7.5.1 I	Hydrogen Trapped by Interstitial O,N and C in Nb	
			and Ta: A Two-Level System	418
		7.5.2	Hydrogen Trapped by Substitutional Ti and Zr in Nb:	
			Two- and Four-Level Systems	434
		7.5.3	Tunneling of H in <i>hcp</i> Rare Earths	449
		7.5.4	Motion and Delocalization of Untrapped Hydrogen	150
			in Nb, Ta and V	452
	7.6	Noncla	ssical Motion of Hydrogen	
		in Do	ped Semiconductors.	455
	1.7	Conclu	usion	45 7
8.	Мі	crosco	nic View of the Low-Temperature Anomalies	
	in	Glasse	s (A. Heuer)	. 459
	8.1	Introc	luction	. 459
	8.2	Phenor	menological Description	
		of the	Low-Temperature Anomalies	. 461
		8.2.1	The Tunneling Model	. 461
		8.2.2	Determination of Tunneling Parameters	
			from Experiments	. 463

9.

8.3	8.2.3 Doub 8 3 1	Soft-Potential Model le-Well Potentials in Computer Simulations	464 465
	0.0.1	in the Present Context	465
	8.3.2	Summary of Earlier Simulations	470
	8.3.3	Systematic Search of Double-Well Potentials	
		for a Model Glass	471
	8.3.4	Application of Different Search Strategies.	481
	8.3.5	Tunneling Systems in the Presence of Impurities	484
	8.3.6	Total Energy Landscape of a Glass-Forming System	487
8.4	Coup	ling Between Tunneling Systems and Heat Bath	493
	8.4.1	Microscopic Origin of the Deformation Potential	
		and the Velocity of Sound	494
	8.4.2	Numerical Evaluation of the Deformation Potential	497
	8.4.3	Relation Between the Deformation Potential	
		and the Structure of DWP's	498
8.5	Natur	e of Tunneling Systems Beyond Computer Simulations	503
	8.5.1	1D Model Glass	504
	8.5.2	Spin Glass Like Model Glass	505
	8.5.3	Simple Models of Soft Modes	507
8.6	Unive	ersality of the Low-Temperature Parameters	508
	8.6.1	Corresponding States	508
	8.6.2	Universal Relations for LJ Glasses	509
	8.6.3	Application for Different Types of Glasses	512
0 7	8.6.4	Quantitative Universality: What Does it Express?	517
8.7	Exper	imental Hints about the Microscopic Nature	~
	of the	Soft Modes	519
	8.7.1	Relation to Strong and Fragile Glasses	519
	8.1.2	Cooling Rate Dependence of 15's	520
	0.1.3 071	The Dependence of Defects	521
	0.7.4	Prossure Dependence	522
	0.7.J 0.7.G	Longth Scale Dependence	522
8 8	Sumn	nary and Outlook	523
0.0	Summ		.32 3
Bey Th	yond t	he Standard Tunneling Model: Potential Model	
(M	A Rar	nos and II Buchenau)	527
9.1	Introc	luction	597
9.2	Tunn	eling States and Soft Modes in Glasses	530
0.2			

Tuni	neling States and Soft Modes in Glasses	. 530
9.2.1	Specific Heat	. 530
9.2.2	Thermal Conductivity	531
9.2.3	Coherent Neutron Scattering	. 532
9.2.4	Temperature Dependence	
	of Raman and Neutron Scattering	. 535

		9.2.5 Comparison Between Neutron and Specific-Heat Data. 537
		9.2.6 More Recent Neutron Data
	9.3	The Soft-Potential Model and its Parameters
		9.3.1 The Anharmonic Quartic Potential 541
		9.3.2 Assumptions
		9.3.3 Level Splittings and Matrix Elements 544
		9.3.4 The Distribution-Limiting Thermal Strain "Ansatz" 548
		9.3.5 Other Approaches 550
	9.4	Predictions of the Soft-Potential Model 551
		9.4.1 Tunneling Density of States in Double-Well Potentials' 551
		9.4.2 Vibrational Density of States 552
		9.4.3 Specific Heat
		9.4.4 Thermal Conductivity
		9.4.5 Acoustic Attenuation
	9.5	Conclusion and Outlook
Re	feren	ces
Ind	d e x	