Contents

	Preface	xi
1	Critical effects in semiclassical scattering	1
1.1	Classical scattering	
1.2	Semiclassical scattering	6
1.3	Critical effects	11
2	Diffraction and Coronae	15
2.1	Geometrical optics	15
2.2	Classical diffraction theory	17
2.3	The corona	20
3	The rainbow	22
3.1	Geometrical-optic theory	22
3.2	Wave-optic theory	25
3.3	Electromagnetic theory	29
4	The glory	30
4.1	Observations	30
4.2	Proposed theories	32
4.3	The geometrical theory of diffraction	34
5	Mie solution and resonances	37
5.1	The Mie solution	37
5.2	Convergence difficulties	40
5.3	Lasing droplets	43
6	Complex angular momentum	45
6.1	The Poisson representation	45
6.2	CAM approximations	48
7	Scattering by an impenetrable sphere	52
7.1	WKB and classical diffraction theory approximations	52
7.2	Geometrical theory of diffraction	55
7.3	Fock's theory of diffraction	57
7.4	CAM theory	60
7.5	Structure of the hard sphere wave function	64
8	Diffraction as tunneling	68
8.1	Effective potential and edge domain	69
8.2	1 5	71
8.3	1	72
8.4		74
X.5	The Fockl approximation	78

8.6	Numerical comparisons	79
8.7	Diffraction as a tunneling effect	83
9	The Debye expansion	87
9.1	The effective potential	87
9.2	Regge poles	89
9.3	The Debye expansion	90
9.4	Convergence of the Debye expansion	93
9.5	Direct reflection term	95
9.6	Direct transmission term	97
10	Theory of the rainbow	101
10.1	The third Debye term	101
10.2	The Chester-Friedmann-Ursell method	105
10.3	Uniform CAM rainbow approximation	107
10.4	CAM rainbow theory predictions	109
10.5	Numerical tests	112
10.6	Rainbow as a diffraction catastrophe	115
11]	Theory of the glory	117
11. 1	Observational and numerical glory features	117
11.2	Cross-polarization and axial focusing	121
11.3	Geometrical-optic and van de Hulst terms	124
11.4	Orbiting and leading higher-order terms	128
11.5	CAM theory of the glory	134
1 1.6	Explanation of the glory features	137
12	Near-critical scattering	143
12.1	Geometrical-optic theory	144
12.2	Removal of fine structure	145
12.3	Interference and physical optics theories	147
12.4	Effective potential and leading CAM terms	151
12.5	CAM theory of near-critical scattering	152
12.6	Planar reflection limit and Goos-Hänchen shift	155
12.7	Numerical comparisons	159
13	Average cross sections	164
13.1	Efficiency factors	164
13.2	CAM theory of average efficiency factors	167
13.3	3 Numerical results	170
13.4	Forward optical glory	173
14	Orbiting and resonances	178
14.1	Effective potential and resonances	179
14.2	2 The poles of the S-function	181
14.3	B Resonance and background contributions	183
14.4	4 CAM theory of the ripple	185

Contents

15 N	Iacroscopic applications	190
15.1	Recent applications of Mie scattering	190
15.2	Applications to radiative transfer and to astronomy	193
15.3	Applications to acoustics	198
15.4	Applications to seismology	199
15.5 1	Nonlinear Mie scattering	201
16	Applications to atomic, nuclear and particle physics	204
16.1	Atomic diffractive and rainbow scattering	204
16.2	Atomic glories and orbiting resonances	207
16.3	Rainbows in nuclear physics	209
16.4	Nuclear glories and surface waves	212
16.5	Application to particle physics	217
16.6	Why complex angular momentum?	219
	References	221
	Index	231

