Preface to the Second Edition iii Preface to the First Edition v

Chapter 1 Atomic Structure 1

- 1-1 Rutherford's Experiments and a Model for Atomic Structure
- 1-2 Atomic Number and Atomic Mass 2
- 1-3 Nuclear Structure 3
- 1-4 Bohr Theory of the Hydrogen Atom 4
- 1-5 Absorption and Emission Spectra of Atomic Hydrogen 8
- 1-6 Ionization Energy of Atomic Hydrogen 15
- 1-7 General Bohr Theory for a One-Electron Atom 17
- 1-8 Matter Waves 20
- 1-9 The Uncertainty Principle 21
- 1-10 Atomic Orbitals 23
- I-11 The Wave Equation and the Particle-In-A-Box Problem 24 The Schrödinger Wave Equation 25 The Particle in a Box 26
- 1-12 The Wave Equation and Quantum Numbers for the Hydrogen Atom 31 The Quantum Numbers Quantum Number Specifications of Orbitals 34
- 1-1 3 Many-Electron Atoms 46
- 1-114 Effects of Electron-Electron Repulsion in Many-Electron Atoms 51
- 1-1 S Atomic Energy States and Term Symbols 56 Energy States in Many-Electron Atoms 57 Energy States in Many-Electron Atoms Containing Equivalent Electrons 59 Ground State Terms for Many-Electron Atoms 62 Determination of Only the Ground-State Term Symbol 63 Atomic Energy States and Valence Orbital Ionization Energies 64

Chapt er 2 Atomic and Molecular Properties 71

- 2-1 Lewis Structures for Atoms 71
- 2-2 Effective Atomic Radii in Molecules 72
- 2-3 Ionization Energies and Orbital Configurations 74 Ionization Energies and Periodicity 78 Ionization Energies of Core Electrons 79
- 2-4 Electron Affinity 81
- 2-5 Covalent Bonding 82
- 2-6 Properties of H₂ and H₂⁺ in a Magnetic Field 85
- 2-7 Lewis Structures for Diatomic Molecules 85

1

- 2-8 Ionic Bonding 86
- 2-9 Electronegativity 90
- 2-10 A Covalent Bond with Ionic Character: The HCI Molecule 92
- 2-11 Lewis Structures for Polyatomic Molecules 93
 Methane, Ammonia, and Water 94
 Hydrides of Beryllium and Boron 95
 Magnesium Chloride, An Ionic Molecule 97
- 2-12 Molecules with Double and Triple Bonds 98
- 2-13 Bonding to Heavier Atoms 101
- 2-14 Resonance 103
- 2-15 Molecular Geometry 106

 The Valence-shell Electron-pair Repulsion Method and Molecular Geometry 107
 VSEPR Applied to Molecules with Steric Number Greater than Six 113
 Exceptions to the VSEPR Rules 114
- 2-16 The Use of Lewis Structures to Predict Molecular Topology 115
- 2-17 Molecular Symmetry 119
- 2-18 Polar and Nonpolar Polyatomic Molecules 123

Chapter.3 The Valence Bond and Hybrid Orbital Descriptions of Chemical Bonding 135

- 3-1 Valence Bond Theory for the Hydrogen Molecule 135
- 3-2 Valence Bond Theory for the Hydrogen Fluoride Molecule 141
- 3-3 Valence Bond Theory for the Water Molecule 145
- 3-4 Valence Bond Theory for the Ammonia Molecule 151
- 3-5 Valence Bond Theory for Molecules Containing No Lone Pair Electrons 153
 VB Theory for BeH₂ 153
 VB Theory for BH₃ 155
 VB Theory for CH₄ 158
 VB Theory for PH₅ and SH₆ 159
- 3-6 Hybrid Orbital Description of Single and Multiple Bonds in Carbon Compounds 162 Acetylene 166 Benzene 166
- 3-7 Mathematical Formulation of sp, sp^2 , and sp^3 Hybrid Orbitals 169
- 3-8 Structure and Bonding in the Boranes 173

Chapter 4 The Molecular Orbital Theory of Electronic Structure and the Spectroscopic Properties of **Diatomic** Molecules 183

4-1 Bonding Theory of H⁺₂ 184 Molecular-orbital Energy Levels 190 Refinements in the Molecular Orbital Treatment of H⁺₂ 194

C

	Molecular Orbital Theory and Valence Bond Theory for H ₂ 195
	Net Bonding in Molecules with 1s Valence Atomic Orbitals 198
	Molecular Spectroscopy 200
	Photoelectron Spectroscopy: An Experimental Method of Studying Molecular Orbitals 212
	Molecules with s and p Valence Atomic Orbitals217Sigma Orbitals218Pi Orbitals221s-p Sigma Mixing223
	Homonuclear Diatomic Molecules 228 Lithium 228 Beryllium 229 Boron 230 Carbon 231 Nitrogen 231 Oxygen 232 Fluorine 232 Neon 233
	Term Symbols for Linear Molecules 233
	The Photoelectron Spectra of N_2 , O_2 , and F_2 238 Oxygen and Fluorine 242 The Photoelectron Spectra of N_2 , O_2 , and F_3 Core Electrons 244
	Homonuclear Diatomic Molecules of the Transition Elements245The V_2 Molecule249The Nb2 Molecule249The Cu2 Molecule250
	Heteronuclear Diatomic Molecules250Hydrogen Fluoride250Carbon Monoxide256Boron Monofluoride256Bond Properties of other Heteronuclear Diatomic Moleculesand Ions257Some Heteronuclear Transition-Metal Molecules260
hapter	5 Electronic Structures, Photoelectron Spectroscopy, and the Frontier Orbital Theory of Reactions of Polyatomic Molecules 272
5-1	The Simplest Polyatomic Molecule, H ₃ ⁺ 272
5-2	Delocalized Molecular Orbitals for BeH ₂ and H ₂ O 274
5-3	Delocalized Molecular Orbitals for BH ₃ and NH ₃ 282 The Borane Molecule 283 The Ammonia Molecule 288
5-4	Delocalized Molecular Orbitals for CH ₄ 292
5-5	Photoelectron Spectra for the Isoelectronic Sequence – Ne, HF, H ₂ O, NH ₃ , and CH ₄ 295
5-6	Delocalized Molecular Orbitals for CO_2 and XeF_2 297 Molecular Orbitals for CO_2 297 The Photoelectron Spectrum of CO_2 302 Molecular Orbitals for XeF_2 303

1

	5-7	Molecular Orbital Theory and Molecular Topology 307
	5-8	Delocalized Molecular Orbitals in Carbon Compounds308Ethylene308Benzene312
	5-9	The Frontier-Orbital Concept315Proton Affinity and the Frontier-Orbital Concept316The Frontier-Orbital Concept Applied to Reactions of Carbon Monoxide321Symmetry Rules for Chemical Reactions324
Ch	apter	6 Transition-Metal Complexes 343
	6-1	Structures and Stabilities343Hard and Soft Metal Ions and Ligands346Chelation and Stability348
	6-2	Isomerism 350 Stereoisomerism 350 Constitutional Isomerism 352
	6-3	Effective Atomic Number and Stability 353 Effective Atomic Number 353 Metal Carbonyls 355
	6-4	Organometallic π Complexes 357
	6-5	Coordination Modes of Diatomic Ligands 360
	6-6	Metal-Metal Bonds in Re ₂ Cl ₈ ²⁻ and Mo ₆ Cl ₈ ⁴⁺ 364
	6-7	Ligand Field Theory for Octahedral Complexes 365 Photoelectron Spectroscopy of Octahedral Complexes 373 d-d Transitions and Light Absorption 376 Factors that Influence the Value of Δ_0 377
	6-8	Ligand Field Theory for Square-Planar Complexes 380
	6-9	Ligand Field Theory for Tetrahedral Complexes 383
	6-10	Charge-Transfer Absorption Bands 385
	6-11	Molecular Orbital Theory for Dibenzenechromium 387
	6-12	The Shapes of Transition-Metal Complexes 391
þ.		The Jahn-Teller Theorem 392 The Angular Overlap Model 393 Application of AOM to Four-Coordinate Complexes 397
		Application of AOM to Octahedral and Square-Planar Complexes 403
	6-13	Equivalency of the d_{z^2} and $d_{x^2-y^2}$ Orbitals in an Octahedral Complex 406
	6-14	Determining Overlap Integral for <i>d</i> Orbitals in Tetrahedral Symmetry 408

Chapter 7 Bonding in Solids and Liquids 419

- 7-1 Elemental Solids and Liquids 419
- 7-2 Ionic Solids 427

7-3	Molecular Solids and Liquids430Van der Waals Forces431Polar Molecules and Hydrogen Bonds436Polar Molecules as Solvents441
7-4	Metals 443 Characteristics of Metals Versus Ionic Crystals 443 Electronic Bands in Metals 444
7-5	Nonmetallic Network Solids 447 Semiconductors 449 Silicates 450
7-6	Lattice Energies of Ionic Solids455Calculation of Lattice Energies456

Appendices 466

Physical Constants and Conversion Factors466The Greek Alphabet467Answers to Selected Questions and Problems468

Index 484

7-3	Molecular Solids and Liquids 430 Van der Waals Forces 431 Polar Molecules and Hydrogen Bonds 436 Polar Molecules as Solvents 441
7-4	Metals 443 Characteristics of Metals Versus Ionic Crystals 443 Electronic Bands in Metals 444
7-5	Nonmetallic Network Solids 447 Semiconductors 449 Silicates 450
7-6	Lattice Energies of Ionic Solids 455 Calculation of Lattice Energies 456

Appendices 466

Physical Constants and Conversion Factors466The Greek Alphabet467Answers to Selected Questions and Problems468

Index 484