Contents

	Preface	vii
	Acknowledgments	xvii
1	How to Study with This Book	1
	1.1 Modeling Physical Phenomena	1
	1.2 Accounting and Balances	2
	1.3 Energy and Entropy Balances	4
	1.4 Applications of Energy and Entropy Balances	6
	• 1:3 Problem Solving	7
	1.6 Four Courses of Study	9
2	Kinematics and Dynamics	10
	2.1 Systems	10
	2.2 Properties and States	17
	2.3 Motions	20
	2.3.1 Spontaneous Changes of State	20
	2.3.2 Induced Changes of State	21
	Problems	24
3	Energy	27
	3.1 Weight Process	27
	3.2 First Law	« 30
	3.3 Uniqueness of Values of $Mg(z_1 - z_2)$	31
	3.4 Definition of Property Energy	32
	3.5 Additive Properties	33
	3.6 Additivity of Energy	34
		xix

	3.7	Conservation of Energy	35
	3.8 I	Energy Balance	37
	3.9	Energy Transfer in a Weight Process	38
	3.10	Impossibility of Perpetual-Motion Machines of the First Kind	39
	3.11	Absolute Energy and Special Relativity	39
	3.12	Mass Balance	41
	3.13	Comment	42
		Problems	43
4	Stat	oility of Equilibrium	53
	4.1	Types of States	53
		4.1.1 Unsteady State	53
		4.1.2 Steady State	53
		4.1.3 Nonequilibrium State	54
		4.1.4 Equilibrium State	55
		4.1.5 Unstable Equilibrium State	56
		4.1.6 Metastable Equilibrium State	56
		4.1.7 Stable Equilibrium State	58
	4.2	Reversible and Irreversible Processes	59
	4.3	The Problem of Stability	60
	4.4	Second Law	62
	4.5	Impossibility of Perpetual-Motion Machines of the Second Kind	64
	4.6	Historical Statements of the Second Law	65
	4.7	Comment	66
		Problems	66
5	Ad	iabatic Availability	69
	5.1	A Class of Weight Processes	69
	5.2	Definition of Property Adiabatic Availability	73
	5.3	Features of Adiabatic Availability	73
		5.3.1 Domain of Definition	73
		5.3.2 Physical Meaning	73
		5.3.3 Nonnegativity	73
		5.3.4 Upper Bound	74
		5.3.5 Changes in Reversible Weight Processes	74
		5.3.6 Changes in Irreversible Weight Processes	14
		5.3.7 Criterion for Reversibility	14
		5.3.8 Lack of Additivity	75

	5.4	Proof of Relations (5.11) and (5.12)	75
	5.5	Generalized Adiabatic Availability	77
	5.6	Features of Generalized Adiabatic Availability	79
		5.6.1 Physical Meaning	79
		5.6.2 Positive and Negative Values	79
		5.6.3 Changes in Reversible Weight Processes	79
		5.6.4 Changes in Irreversible Weight Processes	80
		5.6.5 Criterion for Reversibility	80
	5.7	Adiabatic Availability of a Weight	80
	5.8	Comment	81
		Problems	81
6	Ava	ilable Energy	84
	6.1	Subsystems and Composite Systems	85
	6.2	Mutual Stable Equilibrium	86
	6.3	Reservoirs	87
	6.4	Weight Processes of a System and a Reservoir	88
	6.5	Definition of Property Available Energy	91
	6.6	Features of Available Energy	92
		6.6.1 Domain of Definition	92
		6.6.2 Physical Meaning	92
		6.6.3 Lower Bound	92
		6.6.4 Changes in Reversible Weight Processes	93
		6.6.5 Changes in Irreversible Weight Processes	93
		6.6.6 Criterion for Reversibility	93
	6.7	Additivity of Available Energy	95
	6.8	Generalized Available Energy	95
	6.9	Features of Generalized Available Energy	97
		6.9.1 Physical Meaning	97
		6.9.2 Positive and Negative Values	97
		6.9.3 Changes in Reversible Weight Processes	97
		6.9.4 Changes in Irreversible Weight Processes	98
		6.9.5 Criterion for Reversibility	98
		6.9.6 Additivity	98
		Problems	. 99
7	Ent	tropy	102
	7.1	angenances a to Academic Jandacies un se return	102
	7.2	Features of Entropy	102
			105

		7.2.1 Domain of Definition	103
		7.2.2 Additivity	103
		7.2.3 Changes in Reversible Weight Processes	104
		7.2.4 Changes in Irreversible Weight Processes	104
		7.2.5 Principle of Nondecrease of Entropy	105
	7.3	Entropy Balance	106
	7.4	Definition of Constant c_R	108
	7.5	Dimensions and Units of Entropy	112
		Problems	112
8	Stab	le-Equilibrium-State Principle	117
	8.1	State Principle	117
	8.2	Criteria for Stable Equilibrium States	119
	8.3	The Fundamental Relation	120
		Problems	124
9	Tem	perature	127
	9.1	A Necessary Condition for Mutual Stable Equilibrium	127
	9.2	Definition of Absolute Temperature	129
	9.3	Positivity of Temperature	130
	9.4	Concavity of the Fundamental Relation with Respect to Energy	131
	9.5	Convexity of the Energy Relation with Respect to Entropy	132
	9.6	Temperature as an Escaping Tendency for Energy and Entropy	133
	9.7	Temperature of a Reservoir	136
	9.8	Absolute Entropy	137
	9.9	Third Law	139
	9.10	Relative Temperatures	139
	9.11	Available Energy in Terms of Energy and Entropy	142
	9.12	Adiabatic Availability in Terms of Energy and Entropy	142
		Problems	142
10	Tota	al Potentials	147
	10.1	Additional Necessary Conditions for Mutual Stable Equilibrium	147
	10.2	Total Potential of a Constituent	149

10.2 10.3 Total Potential as an Escaping Tendency of a Constituent 150 10.4 Reservoirs with Variable Amounts of Constituents 151 Problems 151

11	Pressure	155
	11.1 Further Necessary Conditions for Mutual Stable Equilibrium	155
	11.2 Pressure	157
	11.3 Pressure as a Capturing Tendency for Volume	160
	11.4 Reservoirs with Variable Amounts of Constituents and Volume	162
	11.5 Partial Mutual Stable Equilibrium	162
	Problems	164
12	Work and Heat	167
	12.1 Work	168
	12.2 A Nonwork Interaction	174
	12.3 Heat	175
	12.4 Work and Heat Only	180
	12.5 Inequality of Clausius	181
	Problems	182
13	Energy versus Entropy Graphs	186
	13.1 Energy versus Entropy Plane	186
	13.2 Zero-Entropy Line	188
	13.3 Ground-Energy States	188
	13.4 The Fundamental Relation	188
	13.5 Perpetual-Motion Machine of the Second Kind	189
	13.6 Equilibrium Thermodynamics	190
	13.7 Adiabatic Availability	190
	13.8 Work in an Adiabatic Process	190
	13.9 Generalized Adiabatic Availability	191
	13.10 Available Energy	192
	13.11 Generalized Available Energy	194
	13.12 Work Interactions	194
	13.13 Heat Interactions	196
	13.14 Nonwork Interactions	196
	13.15 Optimum Changes in Available Energy	. 199
	13.16 Effects of Irreversibility on the Capacity to Do Work	200
	13.17 Third Law	201
	13.18 Negative Temperatures	203
	Problems	205

14	Summary of Basic Concepts	208
	14.1 Systems, Properties, and States	208
	14.2 Changes of State with Time	210
	14.3 Energy and Energy Balance	212
	14.4 Types of States	213
	14.5 Adiabatic Availability	214
	14.6 Available Energy	215
	14.7 Entropy and Entropy Balance	217
	14.8 Stable Equilibrium States	219
	14.9 Temperature	220
	14.9.1 Temperature of a Reservoir	220
	14.9.2 Relative Temperatures	220
	14.10 Total Potentials	222
	14.11 Pressure	223
	14.11.1 First-Order Taylor Series Expansions	224
	14.11.2 Energy Relation of a Reservoir	225
	. 14.12 Work and Heat Interactions	225
	14.13 Energy versus Entropy Graphs	227
	14.13.1 Zero-Entropy Line	227
	14.13.2 Lowest-Energy States	228
	14.13.3 The Fundamental Relation	228
	14.13.4 Perpetual-Motion Machine of the Second Kind	229
	14.13.5 Adiabatic Availabilty	229
	14.13.6 Work in an Adiabatic Process	229
	14.13.7 Available Energy	230
	14.13.8 Work Interactions	230
	14.13.9 Heat Interactions	231
	Problems	233
15	Heat Engines	234
	15.1 Definition of a Heat Engine	234
	15.2 Heat Pumps and Refrigeration Units	237
	Problems	240
16	Systems with Volume as the Only Parameter	244
	16.1 General Remarks	244
	16.2 Independent Properties	245

	16.3	Characteristic Functions	248
	16.4	Maxwell Relations	250
	16.5	Heat and Work interactions	252
		16.5.1 Constant-Volume Processes	252
		16.5.2 Constant-Pressure Processes	254
		16.5.3 Constant-Temperature Processes	257
		16.5.4 Constant-Entropy Processes	257
	16.6	Comment	257
		Problems	258
17	!Sim	ple Systems	263
	1 7.1	Definition of a Simple System	263
	17.2	Implications of Partitioning	263
	1 7.3	Gibbs, Euler, and Gibbs-Duhem Relations	265
	1 7.4	Extensive and Intensive Properties	267
	1 7.5	Dependences of Intensive Properties	269
	17.6	Convexity of Specific Energy	270
	117.7	Gibbs Free Energy	271
	117.8	Partial Properties	272
		Problems	274
18	Pha	ise Rule	276
	118.1	Homogeneous and Heterogeneous States	276
	18.2	Phases	276
	18.3	3 Gibbs Phase Rule	278
		Problems	280
19	Th	ermophysical Properties of Pure Substances	281
	19.	1 Specific Properties	281
	19.2	2 Molecular Weight	281
	19.	3 Experimental Results	282
	19.4	4 Specific Latent Heats	289
	19.	5 Two-Phase Mixtures	292
	19.6	Tables and Charts of Properties	294
	19.7	Specific Heats	298
	19.8	Equation of State	301
	19.9	O Coefficients of Isothermal Compressibility and Isobaric Expansion	304
	19.	10 Speed of Sound	306
		Problems	306

20	Ideal Gases, Liquids, and Solids	315
	20.1 Ideal-Gas Behavior	315
	20.2 Perfect-Gas Model	324
	20.3 . Specific Heat and Molecular Structure	321
	20.4 Ideal Incompressible Behavior	331
	20.5 Fugacity and Activity	3 3 4
	20.6 Effect of Pressure on the Fugacity of a Liquid	336
	Problems	339
21	Equations of State	344
	21.1 Compressibility Factor	344
	2 1.2 Van der Waals Equation	346
	21.3 Dieterici Equation	348
	21.4 Virial Equations	349
	21.5 Beattie-Bridgeman Equation	349
	21.6 Benedict-Webb-Rubin Equation	350
	21.7 Principle of Corresponding States	350
	Problems	351
22	Bulk Flow	356
	22.1 Bulk-Flow States	356
	22.2 Bulk-Flow Interactions	351
	22.3 Work, Heat, and Bulk Flow	360
	22.4 Combined Rate Balance	363
	Problems	365
23	Conversion Devices	370
	23.1 Steady Flow Through a Pipe	370
	23.2 Diffusers	374
	23.3 Nozzles	315
	23.4 Throttles and Valves	376
	23.5 Compressors and Pumps	37Y
	23.6 Turbines	382
	23.7 Heat Exchangers	384
	23.8 Heat Conductors and Heat Convectors	386
	Problems	388

xxvi

24 Availability Functions

24.1	General Remarks		400
24.2	The Environment as	a Reservoir	401
24.3	Availability or Exerg	Į .	403
24.4	Different Availabilitie	es	404
24.5	Availability or Exerg	y Analyses	407
24.6	Thermodynamic Efficient	ciency or Effectiveness	411
24.7	Practical Limitations		412
24.8	Comments		414
	Problems		415

25 Energy C

Energy Conversion Systems

25.1 Combustion Systems	428
25.1.1 External Combustion	428
25.1.2 Internal Combustion	430
25.2 Nuclear Fission Reactors	433
25.3 A Solar System: Hydropower	435
25.4 Working-Fluid Cycles	436
25.5 Carnot Cycle	438
25.6 Rankine Cycle	444
25.7 Otto Cycle	448
25.8 Diesel Cycle	451
25.9 Joule-Brayton Cycle	453
25.10 Stirling Cycle	456
25.11 Refrigeration and Heating Cycles	458
25.12 Linde-Hampson Liquefaction Cyc	cle 460
Problems	462

21 Thermophysical Properties of Mixtures

26.1 Specific Properties	468
26.2 Experimental Results on Binary Mixtures	469
26.3 Partial Pressures	474
26.4 Equation of State in Terms of Partial Pressure	es 477
26.5 Partial Properties in Terms of Partial Pressure	es 478
Problems	479

27	Ideal-Gas Mixtures and Solutions	481
	27.1 Gibbs-Dalton Mixtures	481
	27.2 Ideal-Gas Mixtures	483
	27.3 Entropy of Mixing	485
	27.4 Psychrometry	487
	27.5 Ideal Solutions	492
	27.6 Entropy of Dilution and Work of Separation	494
	27.7 Two-Phase Liquid-Vapor States	496
	27.8 Two-Phasel Liquid-Solid States	503
	Problems	504
28	Nonideal Mixtures	515
	28.1 Fugacity and Activity of a Constituent in a Mixture	515
	28.2 Enthalpies, Entropies, and Volumes of Isothermobaric Mixing	517
	28.3 Van Ness and Duhem-Margules Relations	519
	28.4 Van Laar and Margules Equations for Binary Mixtures	522
	Problems	525
29	Chemical Reactions	527
	29.1 Conservation of Atomic Nuclei	521
	29.2 Stoichiometry	528
	29.3 Reaction Coordinate	530
	29.4 Changes in Amounts and Composition	531
	29.5 Degree of Reaction	534
	29.6 Multiple Reactions	535
	29.7 Energy and Entropy Balances for a Batch Process	539
	29.8 Energy and Entropy Balances for a Steady-State Rate Process	540
	29.9 Mixture Properties at Different Compositions	541
	29.10 Reactions of Formation and Standard Properties of Formation	545
	Problems	552
30	Chemical Equilibrium	555
	30.1 Necessary Conditions for Stable Equilibrium	555
	30.2 Chemical Equilibrium with Respect to a Single Reaction	556
	30.3 Temperature and Pressure Effects	564
	30.4 Chemical Equilibrium with Respect to Many Reactions	561
	30.5 Phase Rule for (Chemically Reacting Systems	570
	30.6 Derivation of Conditions for Chemical Equilibrium	571

	30.7	Conditions for Chemical Equilibrium in Terms of Temperature and Pressure	574	
	30.8	Complete Chemical Equilibrium	578	
	50.0	Problems	580	
31	Con	nbustion	586	
	31.1	Fuels	586	
	31.2	Combustion Stoichiometry	586	
	31.3	Heating Values	591	
	31.4	Adiabatic Flame Temperature	594	
	31.5	Availability of a Fuel	604	
	31.6	Loss of Availability Due to Combustion	607	
		Problems	613	
	Ep	ilogue	616	
A	Ph	ysical Constants and Unit Conversion Tables	617	
		TABLE A. 1. Prefix names and symbols for units of measure.	617	
NOE!		TABLE A.2. Physical constants in SI units.	617	
	22	TABLE A.3. Units for length, and conversion factors to SI units.	618	
n aci		TABLE A.4. Units for volume, and conversion factors to SI units.	618	
en lic		TABLE A.5. Units for mass, and conversion factors to SI units.	618	
(inch)		TABLE A.6. Units for density, and conversion factors to SI units.	618	
(simi		TABLE A.7. Units for force, and conversion factors to SI units.	619	
		TABLE A.8. Units for pressure, and conversion factors to SI units.	619	
man		TABLE A.9. Units for energy, and conversion factors to SI units.	619	
-ing		TABLE A. 10. Units for power, and conversion factors to SI		
A CARK		units.	620	
B	T	ables of Properties	621	
and y	Ws pres	TABLE B.11 Triple-point temperatures and pressures of various sub-		
		stances.	621	

 TABLE B.2. Molecular weights and critical-state properties for various substances.
 622

TABLE B.3. Values of saturated-solid temperature, $T_{j,sat}$, specific enthalpy of fusion, $h_{\rm jf}$, saturated-vapor temperature, $T_{\rm sat}$, and specific

xxx Contents

enthalpy of vaporization, $h_{\rm fg}$, at pressure $p_{\rm o} = 1$ atm for various substances.

TABLE B.4. Values of the constants a, b, c, and d for use in the approximate expressions

$$\begin{split} c_p(T) &= a + b \, T + c \, T^2 + d \, T^3 \\ h(T) &= a \, T + \frac{1}{2} \, b \, T^2 + \frac{1}{3} \, c \, T^3 + \frac{1}{4} \, d \, T^4 \end{split}$$

 $s(T, p) = a \ln T + b T + \frac{1}{2} c T^{2} + \frac{1}{3} d T^{3} - R \ln p$

of various substances.

TABLE B.5. Values of the constants a, b, c, and d for use in the approximate expressions

$$c_n(T) = a + b T^{1/4} + c T^{1/2} + d T^{3/4}$$

$$h(T) = a T + \frac{4}{5} b T^{5/4} + \frac{2}{3} c T^{3/2} + \frac{4}{7} d T^{7/4}$$

$$s(T,p) = a \ln T + 4 b T^{1/4} + 2 c T^{1/2} + \frac{4}{3} d T^{3/4} - R \ln p$$

of various substances.

TABLE B.6. Constants for the van der Waals and Dieterici equations ofstate for various substances, determined from the critical data in TableB.2 and equations (21.6) and (21.10).

TABLE B.7. Values of the enthalpy of formation, the Gibbs free energy d formation, and the entropy of formation of various substances in the idea gas state at standard temperature, $T_0 = 25^{\circ}$ C, and pressure, $p_0 = 1$ atm 627

TABLE B.8. Values of the constants a_f and b_f for the reaction mechanism of formation of various substances in ideal-gas states at standard presure, $p_o = 1$ atm, for use in the approximate expression $K(T) = \exp(\Delta a - \Delta b/T)$.

TABLE B.9. Values of enthalpy, Gibbs free energy, and entropy combustion of fuels at standard temperature, $T_0 = 25^{\circ}$ C, and pressure $p_0 = 1$ atm.

TABLE B.10. Values of properties of ammonia, NH₃.

TABLE B.11. Values of properties of Freon 12, CCl₂F₂.

TABLE B.12. Values of properties of Freon 114, C₂Cl₂F₄.

TABLE B.13. Values of properties of nitrogen, N₂.

TABLE B.14. Values of properties of water, H₂O.

----- --- ----- ------- or proper

Index

63

63

634

63

625