List of Topics

Chapter 1 Introduction to Cells

1

Cells Under the Microscope

The Invention of the Light Microscope Led to the	2
	2
Cells, Organelles, and Even Molecules Can Be	_
Seen Under the Microscope	3
The Eucaryotic Cell	9
The Nucleus Is the Information Store of the Cell	9
Mitochondria Generate Energy from Food to	
Power the Cell	10
Chloroplasts Capture Energy from Sunlight	12
Internal Membranes Create Intracellular	
Compartments with Different Functions	13
The Cutogel Is a Concentrated Aqueous Cel	10
af Large and Small Malagulas	15
of Large and Small Molecules	15
The Cytoskeleton Is Responsible for	
Cell Movements	16
Unity and Diversity of Cells	17
Cells Vary Enormously in Appearance	
and Function	19

Living Cells All Have a Similar Basic Chemistry	21
All Present-Day Cells Have Apparently Evolved from the Same Ancestor	21
Bacteria Are the Smallest and Simplest Cells	22
Molecular Biologists Have Focused on E. coli	25
<i>Giardia</i> May Represent an Intermediate Stage in the Evolution of Eucaryotic Cells	25
Brewer's Yeast Is a Simple Eucaryotic Cell	26
Single-celled Organisms Can Be Large, Complex, and Fierce: The Protozoans	27
Arubidopsis Has Been Chosen Out of 300,000 Species as a Model Plant	28
The World of Animals Is Represented by a Fly, a Worm, a Mouse, and <i>Homo Sapiens</i>	29
Cells in the Same Multicellular Organism Can Be Spectacularly Different	31
Essential Concepts	34
Questions	35

Chapter 2 Chemical Components of Cells

Chemical Bonds	37
Cells Are Made of Relatively Few Types of Atoms	38
The Outermost Electrons Determine How Atoms	
Interact	39
Ionic Bonds Form by the Gain and Loss	
of Electrons	42
Covalent Bonds Form by the Sharing of Electrons	43
There Are Different Types of Covalent Bonds	45
Water Is the Most Abundant Substance in Cells	48
Some Polar Molecules Form Acids and Bases	
in Water	49
Molecules in Cells	52
A Cell Is Formed from Carbon Compounds	52

Cells Contain Four Major Families of Small	
Organic Molecules	52
Sugars Are Energy Sources for Cells and	
Subunits of Polysaccharides	53
Fatty Acids Are Components of Cell Membranes	55
Amino Acids Are the Subunits of Proteins	60
Nucleotides Are the Subunits of DNA and RNA	61
Macromolecules Contain a Specific Sequence	
of Subunits	65
Noncovalent Bonds Specify the Precise Shape	
of a Macromolecule	69
Noncovalent Bonds Allow a Macromolecule to Bin	nd
Other Selected Molecules	72
Essential Concepts	73
Questions	74

Chapter 3 Energy, Catalysis, and Biosynthesis

Catalysis and the Use of Energy by Cells 79

Biological Order Is Made Possible by the Release	
of Heat Energy from Cells	79
Photosynthetic Organisms Use Sunlight	
to Synthesize Organic Molecules	82
Cells Obtain Energy by the Oxidation	
of Biological Molecules	83
Oxidation and Reduction Involve Electron	
Transfers	84
Enzymes Lower the Barriers That Block	
Chemical Reactions	85
How Enzymes Find Their Substrates: The	
Importance of Rapid Diffusion	86
The Free-Energy Change for a Reaction	
Determines Whether It Can Occur	89
The Concentration of Reactants Influences AG	85
For Sequential Reactions, AG" Values	
Are Additive	93

Activated Carrier Molecules		
and Biosynthesis	94	
The Formation of an Activated Carrier Is Coupled to an Energetically Favorable		
Reaction	95	
ATP Is the Most Widely Used Activated Carrier Molecule	96	
Energy Stored in ATP Is Often Harnessed to Join Two Molecules Together	97	
NADH and NADPH Are Important Electron Carriers	98	
There Are Many Other Activated Carrier Molecules in Cells	100	
The Synthesis of Biological Polymers Requires an Energy Input	103	
Essential Concepts	105	
Questions	106	

Chapter 4 How Cells Obtain Energy from Food

The Breakdown of Sugars and Fats	108	Electron Transport Drives the Synthesis of the	10.4
Food Molecules Are Broken Down in Three		Majority of the ATP in Most Cells	124
Stages to Produce ATP	108	Storing and Utilizing Food	125
Glycolysis Is a Central ATP-producing Pathway	110	Organisms Store Food Molecules in Special	- 1
Fermentations Allow ATP to Be Produced in the		Reservoirs	125
Absence of Oxygen	114	Many Biosynthetic Pathways Begin with	
Glycolysis Illustrates How Enzymes Couple		Glycolysis or the Citric Acid Cycle	127
Oxidation to Energy Storage	114	Metabolism Is Organized and Regulated	128
Sugars and Fats Are Both Degraded to Acetyl		Essential Concepts	129
CoAl in Mitochondria	118	Questions	120
The Citric Acid Cycle Generates NADH by		QUESTIONS	130
Oxidizing Acetyl Groups to CO,	119		

Chapter 5 Protein Structure and Function

The Shape and Structure of Proteins	134	The α Helix and the β Sheet Are Common Folding Patterns	141
Amino Acid Sequence	134	Proteins Have Several Levels of Organization	145
Proteins Fold into a Conformation of Lowest Energy	139	Few of the Many Possible Polypeptide Chains Will Be Useful	147
Proteins Come in a Wide Variety of		Proteins Can Be Classified into Families	147
Complicated Shapes	140	Larger Protein Molecules Often Contain More Than One Polypeptide Chain	148

Lis

С

Fr PC

Tr

Se Sij

Pr

Al

so

Ex

H Pr Th

Bi

Er

Ly

C

TH GE

Al

Th

DI DI Nd TH DI Sh

Proteins Can Assemble into Filaments, Sheets, or Spheres	149
A Helix Is a Common Structural Motif in Biological Structures	152
Some Types of Proteins Have Elongated Fibrous Shapes	152
Extracellular Proteins Are Often Stabilized by Covalent Cross-Linkages	154
How Proteins Work	154
Proteins Bind to Other Molecules	155
The Binding Sites of Antibodies Are Especially Versatile	156
Binding Strength Is Measured by the Equilibrium Constant	157
Enzymes Are Powerful and Highly Specific	1.67
Catalysts	16/
Lysozyrne Illustrates How an Enzyme Works	167

Chapter 6 DNA

The Structure and Function of DNA	184
Genes Are Made of DNA	185
A DNA Molecule Consists of Two Complementary Chains of Nucleotides	185
The Structure of DNA Provides a Mechanism for Heredity	188
DNA Replication	189
DNA Synthesis Begins at Replication Origins	190
New DNA Synthesis Occurs at Replication Forks	191
The Replication Fork Is Asymmetrical	193
DNA Polymerase Is Self-correcting	194
Short Lengths of RNA Act as Primers for DNA Synthesis	194

Chapter 7 From DNA to Protein

From DNA to RNA	212
Portions of DNA Sequence Are Transcribed into RNA	212
Transcription Produces RNA Complementary to One Strand of DNA	213
Several Types of RNA Are Produced in Cells	215
Signals in DNA Tell RNA Polymerase Where , to Start and Finish	216

$V_{ m max}$ and $K_{ m M}$ Measure Enzyme Performance	169
Tightly Bound Small Molecules Add Extra Functions to Proteins	171
The Catalytic Activities of Enzymes Are Regulated	172
Allosteric Enzymes Have Two Binding Sites That Interact	173
A Conformational Change Can Be Driven by Protein Phosphorylation	174
GTP-binding Proteins Can Undergo Dramatic Conformational Changes	176
Motor Proteins Produce Large Movements in Cells	176
Proteins Often Form Large Complexes That Function as Protein Machines	178
Essential Concepts	179
Questions	180

Proteins at a Replication Fork Cooperate to Form a Replication Machine	196
DNA Repair	198
Changes in DNA Are the Cause of Mutations	198
Replication Errors That Escape from the Replication Machine	200
DNA Is Continually Suffering Damage in Cells	201
The Stability of Genes Depends on DNA Repair The High Fidelity with Which DNA Is Maintained Means That Closely Related Species Have Proteins with Very Similar	202
Sequences	205
Essential Concepts	206
Questions	207

Eucaryotic RNAs Undergo Processing in the Nucleus	218
Eucaryotic Genes Are Interrupted by	
Noncoding Sequences	219
Introns Are Removed by RNA Splicing	220
mRNAI Molecules Are Eventually Degraded by	
the Cell	222
The Earliest Cells May Have Had Introns in	
Their Genes	223

From RNA to Protein	224
An mRNA Sequence Is Decoded in Sets of Three Nucleotides	224
tRNA Molecules Match Amino Acids to Codons in mRNA	225
Specific Enzymes Couple tRNAs to the Correct Amino Acid	227
The RNA Message Is Decoded on Ribosomes Codons in mRNA Signal Where to Start and	227
to Stop Protein Synthesis Proteins Are Made on Polyribosomes	230 232

Carefully Controlled Protein Breakdown Helps Regulate the Amount of Each	
Protein in a Cell	232
There Are Many Steps Between DNA and	
Protein	234
RNA and the Origins of Life	234
Simple Biological Molecules Can Form Under Prebiotic Conditions	235
RNA Can Both Store Information and Catalyze	
Chemical Reactions	237
RNA Is Thought to Predate DNA in Evolution	239
Essential Concepts	240
Questions	241

Chapter 8 Chromosomes and Gene Regulation

The Structure of Eucaryotic	
Chromosomes	246
Eucaryotic DNA Is Packaged into Chromosomes	246
Chromosomes Exist in Different States	
Throughout the Life of a Cell	247
Specialized DNA Sequences Ensure That	
Chromosomes Replicate Efficiently	249
Nucleosomes Are the Basic Units of Chromatin	
Structure	250
Chromosomes Have Several Levels of	
DNA Packing	252
Interphase Chromosomes Contain Both	
Condensed and More Extended Forms	
Desider Effects on Case Francisco Descal	253
Differences in Interphase Chromosome	
Packing	950
Interphase Chromosomes Are Organized	236
Within the Nucleus	950
Cono Dogulation	230
Gene Regulation	257
Cells Regulate the Expression of Their Genes	258
Transcription Is Controlled by Proteins	
Binding to Regulatory DNA Sequences	259

Repressors Turn Genes Off and Activators Turn Them On	261
Initiation of Eucaryotic Gene Transcription Is a Complex Process	263
Eucaryotic RNA Polymerase Requires General Transcription Factors	26
Eucaryotic Gene Regulatory Proteins Control Gene Expression from a Distance	265
Packing of Promoter DNA into Nucleosomes Can Affect Initiation of Transcription	266
Eucaryotic Genes Are Regulated by Combinations of Proteins	267
The Expression of Different Genes Can Be Coordinated by a Single Protein	268
Combinatorial Control Can Create Different Cell Types	269
Stable Patterns of Gene Expression Can Be Transmitted to Daughter Cells	271
The Formation of an Entire Organ Can Be Triggered by a Single Gene Regulatory	
Protein	273
Essential Concepts	274
Questions	275

Chapter 9 Genetic Variation

Genetic Variation in Bacteria	278	Mutation in Bacteria Can Be Selected by a	
The Rapid Rate of Bacterial Division Means That Mutation Will Occur Over a Short		Change in Environmental Conditions Bacterial Cells Can Acquire Genes from Other	280
Time Period	279	Bacteria	281

Bacterial Genes Can Be Transferred by a Process Called Bacterial Mating	282
Some Bacteria Can Take Up DNA from Their Surroundings	284
Gene Exchange Occurs by Homologous Recombination Between Two DNA Molecules of Similar Nucleotide Sequence	285
Genes Can Be Transferred Between Bacteria by Bacterial Viruses	288
Transposable Elements Create Genetic Diversity	289
Sources of Genetic Change in Fucarvotic	
Sources of activity change in Eucaryotic	
Genomes	291
Genomes Random DNA Duplications Create Families of Related Genes	291 292
Genomes Random DNA Duplications Create Families of Related Genes Genes Encoding New Proteins Can Be Created by the Recombination of Exons	291 292 293
Genomes Random DNA Duplications Create Families of Related Genes Genes Encoding New Proteins Can Be Created by the Recombination of Exons A Large Part of the DNA of Multicellular Eucaryotes Consists of Repeated,	291 292 293
Genomes Random DNA Duplications Create Families of Related Genes Genes Encoding New Proteins Can Be Created by the Recombination of Exons A Large Part of the DNA of Multicellular Eucaryotes Consists of Repeated, Noncoding Sequences	291292293294

Chanter 10 DNA Technology

How DNA Molecules Are Analyzed	315
Restriction Nucleases Cut DNA Molecules at Specific Sites	315
Gel Electrophoresis Separates DNA Fragments of Different Sizes	317
The Nucleotide Sequence of DNA Fragments Can Be Determined	320
Nucleic Acid Hybridization	320
DNA Hybridization Facilitates the Prenatal	321
Seq	323
DNA C	324
DNA L	
Pro	325
Bacteria Plasmids	326
Human	327

The Evolution of Genomes Has Been Accelerated by Transposable Elements	296
Viruses Are Fully Mobile Genetic Elements That Can Escape from Cells	297
Retroviruses Reverse the Normal Flow of Genetic Information	300
Retroviruses That Have Picked Up Host Genes Can Make Cells Cancerous	302
Sexual Reproduction and the	
Reassortment of Genes	304
Sexual Reproduction Gives a Competitive Advantage to Organisms in an Unpredictably Variable Environment	304
Sexual Reproduction Involves Both Diploid and Haploid Cells	305
Meiosis Generates Haploid Cells from Diploid Cells	306
Meiosis Generates Enormous Genetic Variation	307
Essential Concepts Questions	309 310

cDNA Libraries Represent the mRNA	
Produced by a Particular Tissue	329
Hybridization Allows Even Distantly Related Genes to Be Identified	331
The Polymerase Chain Reaction Amplifies Selected DNA Sequences	332
DNA Engineering	335
Completely Novel DNA Molecules Can Be	
Constructed	335
Rare Cellular Proteins Can Be Made in Large	
Amounts Using Cloned DNA	337
RNAs Can Be Produced by Transcription	
in Vitro	338
Mutant Organisms Best Reveal the Function	
of a Gene	339
Transgenic Animals Carry Engineered Genes	340
Essential Concepts	342
Questions	343

Chapter 11 Membrane Structure

348

The Lipid Bilayer

Membrane Lipids Form Bilayers in Water	349
The Lipid Bilayer Is a Two-dimensional Fluid	352
The Fluidity of a Lipid Bilayer Depends on Its	
Composition	353
The Lipid Bilayer Is Asymmetrical	354
Lipid Asymmetry Is Generated Inside the Cell	355
Lipid Bilayers Are Impermeable to Solutes	
and Ions	356
Membrane Proteins	357
Membrane Proteins Associate with the Lipid	
Dhayer in various ways	358

A Polypeptide Chain Usually Crosses the	
Bliayer as all a Helix	358
Membrane Proteins Can Be Solubilized in	
Detergents and Purified	36D
The Complete Structure Is Known for	
Very Few Membrane Proteins	36
The Plasma Membrane Is Reinforced by	
the Cell Cortex	363
The Cell Surface Is Coated with Carbohydrate	364
Cells Can Restrict the Movement of Membrane	
Proteins	360
Essential Concepts	368
Questions	368

Chapter 12 Membrane Transport

The Ion Concentrations Inside a Cell Are Very	
Different from Those Outside	372
Carrier Proteins and Their Functions	373
Solutes Cross Membranes by Passive or Active Transport	375
Electrical Forces as Well as Concentration Gradients Can Drive Passive Transport	375
Active Transport Moves Solutes Against Their Electrochemical Gradients	377
Animal Cells Use the Energy of ATP Hydrolysis to Pump Out Na+	378
The Na'-K' Pump Is Driven by the Transient Addition of a Phosphate Group	379
Animal Cells Use the Na ⁺ Gradient to Take Up Nutrients Actively	380
The Na ⁺ -K ⁺ Pump Helps Maintain the Osmotic Balance of Animal Cells	381
Intracellular Ca ²⁺ Concentrations Are Kept Low by Ca ²⁺ Pumps	383
H [#] Gradients Are Used to Drive Membrane Transport in Plants, Fungi, and Bacteria	384
Ion Channels and the Membrane	
Potential	385
Ion Channels Are Ion Selective and Gated	386

Ion Channels Randomly Snap Between Open and Closed States	388
Voltage-gated Ion Channels Respond to the Membrane Potential	390
The Membrane Potential Is Governed by Membrane Permeability to Specific Ions	391
Ion Channels and Signaling in Nerve Cells	394
Action Potentials Provide for Rapid Long-Distance Communication Action Potentials Are Usually Mediated	395
by voltage-gated Na+ Channels Voltage-gated Ca ²⁴ Channels Convert Electrical Signals into Chemical Signals at Nerve Terminals	395 397
Transmitter-gated Channels in Target Cells Convert Chemical Signals Back into Electrical Signals	399
Neurons Receive Both Excitatory and Inhibitory Inputs	400
Synaptic Connections Enable You to Think, Act, and Remember	401
Essential Concepts Questions	404 405

L

F

S

Chapter 13 Energy Generation in Mitochondria and Chloroplasts

Cells Obtain Most of Their Energy by a Membrane-based Mechanism	409
Mitochondria and Oxidative Phosphorylation	110
Filosphorylation	410
A Mitochondrion Contains Two Membrane- bounded Compartments	411
High-Energy Electrons Are Generated via the Citric Acid Cycle	413
Electrons Are Transferred Along a Chain of Proteins in the Inner Mitochondrial	
Membrane	414
Electron Transport Generates a Proton	
Gradient Across the Membrane	415
The Proton Gradient Drives ATP Synthesis	417
Coupled Transport Across the Inner Mitochondrial Membrane Is Driven by	410
Proton Gradients Produce Most of the Cell's ATP	419
The Rapid Conversion of ADP to ATP in Mitochondria Maintains a High ATP : ADP	,
Ratio in Cells	421
Electron-Transport Chains and Proton	
Pumping	421
Protons Are Readily Moved by the Transfer of Electrons	422
The Redox Potential Is a Measure of Electron Affinities	422
Electron Transfers Release Large Amounts of Energy	423

Metals Tightly Bound to Proteins Form Versatile Electron Carriers	425
Protons Are Pumped Across the Membrane by	
the Three Respiratory Enzyme Complexes	427
Respiration Is Amazingly Efficient	429
Chloroplasts and Photosynthesis	430
Chloroplasts Resemble Mitochondria but Have an Extra Compartment	430
Chloroplasts Capture Energy from Sunlight and Use It to Fix Carbon	432
Excited Chlorophyll Molecules Funnel Energy into a Reaction Center	433
Light Energy Drives the Synthesis of ATP and NADPH	434
Carbon Fixation Is Catalyzed by Ribulose Bisphosphate Carboxylase	436
Carbon Fixation in Chloroplasts Generates Sucrose and Starch	438
The Genetic Systems of Mitochondria and Chloroplasts Reflect Their Procaryotic	
Origin	438
Our Single-celled Ancestors	439
RNA Sequences Reveal Evolutionary History Ancient Cells Probably Arose in Hot	439
Environments	440
Methanococcus Lives in the Dark, Using Only Inorganic Materials as Food	441
Essential Concepts	443
Questions	444

Chapter 14 Intracellular Compartments and Transport

Membrane-bounded Organelles	448	Proteins Unfold to Enter Mitochondria and Chloroplasts	457
Eucaryotic Cells Contain a Basic Set of Membrane-bounded Organelles	449	Proteins Enter the Endoplasmic Reticulum While Being Synthesized	458
Different Ways	450	Soluble Proteins Are Released into the ER Lumen	459
Protein Sorting	452	Start and Stop Signals Determine the	
Proteins Are Imported into Organelles by Three Mechanisms	453	Arrangement of a Transmembrane Protein in the Lipid Bilayer	461
Signal Sequences Direct Proteins to the		Vesicular Transport	462
Correct Compartment	453	Transport Vesicles Carry Soluble Proteins	
Proteins Enter the Nucleus Through Nuclear Pores	455	and Membrane Between Compartments	463

Vesicle Budding Is Driven by the Assembly of a Protein Coat	463
The Specificity of vesicle Docking Depends on SNAREs	465
Secretory Pathways	467
Most Proteins Are Covalently Modified in the ER Exit from the ER Is Controlled to Ensure Protein Quality	467 468
Proteins Are Further Modified and Sorted in the Golgi Apparatus	469
Secretory Proteins Are Released from the Cell by Exocytosis	470

Endocytic Pathways	472
Specialized Phagocytic Cells Ingest Large Particles	472
Fluid and Macromolecules Are Taken Up by Pinocytosis	473
Receptor-mediated Endocytosis Provides a Specific Route into Animal Cells	474
Endocytosed Macromolecules Are Sorted in Endosomes	475
Lysosomes Are the Principal Sites of Intracellular Digestion	476
Essential Concepts	478
Questions	479

CN

Chapter 1.5 Cell Communication

General	Principles	of	Cell	Signaling	482
---------	------------	----	------	-----------	-----

Signals Can Act over Long or Short Range	482
Each Cell Responds to a Limited Set of Signals	484
Receptors Relay Signals via Intracellular Signaling Pathways	486
Some Signal Molecules Can Cross the Plasma Membrane	488
Nitric Oxide Can Enter Cells to Activate Enzymes Directly	489
There Are Three Main Classes of Cell-Surface Receptors	490
Ion-Channel-linked Receptors Convert Chemical Signals into Electrical Ones	491
Intracellular Signaling Cascades Act as a Series of Molecular Switches	492
G-Protein-linked Receptors	493
Stimulation of G-Protein-linked Receptors	
Activates G-Protein Subunits	493
Some G Proteins Regulate Ion Channels	495

Some G Proteins Activate Membrane-bound	
Enzymes	496
The Cyclic AMP Pathway Can Activate	
Enzymes and Turn On Genes	497
The Pathway Through Phospholipase C	
Results in a Rise in Intracellular Ca ²⁺	499
A Ca ²⁺ Signal Triggers Many Biological Processes	501
Intracellular Signaling Cascades Can	
Achieve Astonishing Speed, Sensitivity,	
and Adaptability: Photoreceptors in the Eye	502
Enzyme-linked Receptors	504
Activated Receptor Tyrosine Kinases	
Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular	
Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins	505
Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the	505
Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the GTP-binding Protein Ras	505 506
 Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the GTP-binding Protein Ras Protein Kinase Networks Integrate 	505 506
 Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the GTP-binding Protein Ras Protein Kinase Networks Integrate Information to Control Complex 	505 506
 Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the GTP-binding Protein Ras Protein Kinase Networks Integrate Information to Control Complex Cell Behaviors 	505 506 508
 Activated Receptor Tyrosine Kinases Assemble a Complex of Intracellular Signaling Proteins Receptor Tyrosine Kinases Activate the GTP-binding Protein Ras Protein Kinase Networks Integrate Information to Control Complex Cell Behaviors Essential Concepts 	505 506 508 510

Chapter I6 Cytoskeleton

Intermediate Filaments	514
Intermediate Filaments Are Strong and Durable	515
Intermediate Filaments Strengthen Cells	
Against Mechanical Stress	516
Microtubules	518

Microtubules Are Hollow Tubes with	510
Structurally Distinct Ends	5191
Microtubules Are Maintained by a Balance of	
Assembly and Disassembly	5191
The Centrosome Is the Major Microtubule-	
organizing Center in Animal Cells	521

Growing Microtubules Show Dynamic Instability	522
Microtubules Organize the Interior of the Cell	523
Motor Proteins Drive Intracellular Transport	525
Organelles Move Along Microtubules	526
Ν	527
Actin	529
Actin Are	530
Actin	
Ν	531
Many Proteins Bind to Actin and Modify Its	
Properties	532

An Actin-rich Cortex Underlies the Plasma Membrane of Most Eucarvotic Cells	533
Cell Crawling Depends on Actin	533
Actin Associates with Myosin to Form Contractile Structures	536
During Muscle Contraction Actin Filaments Slide Against Myosin Filaments	538
Muscle Contraction Is Triggered by a Sudden Rise in Ca^{2+}	539
Essential Concepts Questions	543 544

Chapter 17 Cell Division

Overview of the Cell Cycle	549	Cytokinesis	560
The Eucaryotic Cell Cycle Is Divided into Four Phases	549	The Mitotic Spindle Determines the Plane of Cytoplasmic Cleavage	560
The Cytoskeleton Carries Out Both Mitosis and Cytokinesis	551	The Contractile Ring of Animal Cells Is Made of Actin and Myosin	561
Some Organelles Fragment at Mitosis	551	Cytokinesis in Plant Cells Involves New	
Mitosis	552	Cell-Wall Formation	562
The Mitotic Spindle Starts to Assemble in		Meiosis	563
Prophase	552	Homologous Chromosomes Pair Off During	
Chromosomes Attach to the Mitotic Spindle		Meiosis	563
at Prometaphase	553	Meiosis Involves Two Cell Divisions Rather	
Chromosomes Line Up at the Spindle		Than One	564
Equator at Metaphase	557	Essential Concepts	567
Daughter Chromosomes Segregate at Anaphase	557	Questions	568
The Nuclear Envelope Re-forms at Telophase	559	\mathbf{v}	

Chapter 18 Cell-Cycle Control and Cell Death

The Cell-Cycle Control System	572	Different Cyclin-Cdk Complexes Trigger	57 0
A Central Control System Triggers the Major Processes of the Cell Cycle	572	The Cell Cycle Can Be Halted in G ₁ by Cdk	5/8
The Cell-Cycle Control System Is Based on Cyclically Activated Protein Kinases	574	Cells Can Dismantle Their Control System and Withdraw from the Cell Cycle	581
Entry into M Phase	575	Control of Cell Numbers in Multicellular	
Cyclin-dependent Protein Kinases Are		Organisms	582
Regulated by the Accumulation and Destruction of Cyclin	576	Cell Proliferation Depends on Signals from Other Cells	582
The Activity of Cdks Is Further Regulated by Their Phosphorylation and Dephosphorylation	578	Animal Cells Have a Built-in Limitation on the Number of Times They Will Divide	584

to Avoid Programmed Cell Death 582	4
Programmed Cell Death Is Mediated by an Intracellular Proteolytic Cascade 58	5

Chapter 19 Tissues

Extracellular Matrix and Connective Tissues

594

Plant Cells Have Tough External Walls	594
Cellulose Fibers Give the Plant Cell Wall Its Tensile Strength	596
Animal Connective Tissues Consist Largely of Extracellular Matrix	600
Collagen Provides Tensile Strength in Animal Connective Tissues	600
Cells Organize the Collagen That They Secrete	602
to the Cytoskeleton Inside It	603
Spaces and Resist Compression	604
Epithelial Sheets and Cell-Cell Junctions	605
Epithelial Sheets Are Polarized and Rest on a Basal Lamina	606
Tight Junctions Make an Epithelium Leak- proof and Separate Its Apical and Basal Surfaces	607
Cytoskeleton-linked Junctions Bind Epithelial Cells Robustly to One Another and to	007
the Basal Lamina	609
Gap Junctions Allow Ions and Small Molecules to Pass from Cell to Cell	612

Cancer Cells Disobey the Social Controls on	
Cell Proliferation and Survival	587
Essential Concepts	589
Questions	590

Tissue Maintenance and Renewal,
and Its Disruption by Cancer613Different Tissues Are Renewed at Different Rates 615Stem Calls Commune & Continuous Supply of

Stem Cells Generate a Continuous Supply of Terminally Differentiated Cells	615
Mutations in a Single Dividing Cell Can Cause It and Its Progeny to Violate the Normal Controls	618
Cancer Is a Consequence of Mutation and Natural Selection Within the Population of Cells That Form the Body	619
Cancer Requires an Accumulation of Mutations	620
Development	621
Programmed Cell Movements Create the Animal Body Plan	622
Cells Switch On Different Sets of Genes According to Their Position and Their History	622
Diffusible Signals Can Provide Cells with Positional Information	624
Studies in Drosophila Have Given a Key to Vertebrate Development	626
Similar Genes Are Used Throughout the Animal Kingdom to Give Cells an	
Internal Record of Their Position	627
Essential Concepts	628
Questions	629