CONTENTS ## Plates fall between pages 14 and 15 | INTRODUCTION | | | | 1 | |---|-----------|-------------|-----------|-----| | CHAPTER I. AREA OF CONTACT BETV | | | | 5 | | MEASUREMENT OF SURFACE IRREGULARITIES | AND SU | RFACE | CONTOUR | 5 | | Stylus methods | | er laye | 92000 | 5 | | Optical interference [A] | S | . 51 | Big | 6 | | Electron microscope [A] . | - Kita | Limba | 73 lt | 8 | | Oblique sectioning | and the | neital | it ti | 9 | | AREA OF CONTACT BETWEEN SOLIDS | irticlus | | | 10 | | Asperities of spherical shape | is an | A.MO | FT) | 10 | | Effect of work-hardening . | | | | 14 | | Asperities of conical and pyramidal sha | pe | e Felo | O T | 17 | | The area of real contact | letied to | HATA | 0.30 | 19 | | Area of real and apparent contact | | . 253 | arta | 20 | | The effect of removing the load | ENRINE | A.4400 | 5:14 | 22 | | ELECTRICAL RESISTANCE AS A MEASURE OF | | | | 25 | | Effect of load on contact resistance | TA BOA | MAGE 8 | DAY | 28 | | The contact of flat surfaces . | | SAGI | i v | 30 | | CHAPTER II. SURFACE TEMPERATURI | | UBBIN | NG SOLIDS | 33 | | SURFACE TEMPERATURE OF SLIDING METAI | s | diay pi | 118A | 33 | | Calculation of surface temperature | | | majo | 33 | | Measurement of surface temperature | H OF CI | HAN M | STA | 3.5 | | Temperature of sliding metals . | or rather | right to | dia | 37 | | Temperature of lubricated surfaces | d payage | 2 | | 40 | | Intermittent nature of surface temperate | | | SNC | 41 | | Surface temperature and thermal condu | | | | 41 | | SURFACE TEMPERATURE OF NON-CONDUCTI | | | | 42 | | Temperature at which hot spots become | e visible | 10 231 | TRE | 43 | | Thermal conductivity and the incidence | | | | 44 | | Photographic recording of hot spots | | iclenesi | | 46 | | Effect of grit on the incidence of hot sp | ots | o Mai | ne fi | 47 | | Influence of size and shape of slider | | | 1. | 48 | | Measurement of transient hot spots [A] | | . 87 | arkin. | 49 | | A More Evace Calculation of the Sup | | | | 52 | | CHAPTER III. EFFECT OF FRICTIONAL HEA | TING | ON SU | RFACE | | |--|--------------|------------------|---------------|-------| | FLOW | • | | • | 58 | | POLISHING AND SURFACE FLOW OF SOLIDS [A] | , | • | • | , 58 | | 81 | • | • | . , | | | Mechanism of polishing , . | . , | | , , | | | The action of a typical polisher | | • | | . 63 | | THE MECHANISM OF SLIDING ON ICE AND SNOW [A] | | al ==== | | . 65 | | Pressure melting .OMO: MAR WINE TOAT | # CON | O AREA | v dota | . 6 | | Melting due to frictional heating . | ENDARR | FT OF St | SUBERNIE | . 60 | | Formation of a water laver | | | | 6 | | Effect of temperature | · [M] so | nerolisi | of labite | . 6 | | Effect of thermal conductivity | Ald Lane | debayada | | . 6 | | Static and kinetic friction and the influence of s | peed | rianni the | z sopile | . 6 | | k and relevant references granded | | | | | | CHAPTER I'V. FRICTION AND SURFACE DA | | | | | | METALS | gulaebi | erl-strow | fect of | 7. | | THE MM.SUREMENT OF FRICTION | from In- | State No. | and trimore | . 7. | | The measurement of the temperature of stationa | ary surfa | aces | sana se | . 7 | | Preparration of surfaces | terunga. | bon to | 10,69 | . 7 | | THE FRICTION OF METALS | ov galive | man la | tealin or | . 78 | | CHEMICAL AND RADIOACTIVE DETECTION OF METAL | L TRANS | FER [A] | JASUAT | . 82 | | FRICTION AND SURFACE DAMAGE AT LIGHT LOADS [| | | | | | EARLY THEORIES OF METALLIC FRICTION . | alme i | alt to to | ulnos so | . 8 | | | | | | | | CHAPTER V. MECHANISM OF METALLIC FRIG | | | | . 90 | | THE ROLE OF SHEARING AND PLOUGHING . | To ski | | PPP. | . 90 | | The phughing term | | True Ten in | air tool. | . 92 | | The shearing term | 1 . marrie | a birthan | ere cons | . 94 | | The shear strength of the metal junctions | ex sothi | te to sur | Anna-franc | . 9 | | Amontons's law . | brigate | ni lo sus | Accordant | . 98 | | THE INTERDEPENDENCE OF SHEARING AND PLOUGH | ING | Allen te | of the second | . 101 | | INTIMACY OF CONTACT AND THE INFLUENCE OF SUI | RFACE F | ILMS | or exalter | . 104 | | INTERMITTENT MOTION | torn min | 19 1 11 11 11 11 | VP man | . 105 | | LUBRICATING PROPERTIES OF THIN METALLIC FILMS | S | | | . 111 | | Friction as a function of track width . | Seen makes | 1 midwei | | . 113 | | The limiting him thickness | · south | ALC: UNK | | . 114 | | Breakdown of the film . storp and to store | bingi ad | r no line | the best | . 115 | | vvear of nims | water from | Acole Sa | | . 116 | | Effect of temperature | | Witn Steel | * | . 117 | | METALLIC FILMS AS LUBRICANTS | Market Brank | . 5 | • 12 | . 119 | | 0 | ~ | 117 | 13 13 | B.T | TC | |---|---|-----|-------|-----|----| | | - | v | М. | N | TS | | CONTENTS | | | XV | |--|--|--|--| | CHAPTER VI. ACTION OF BEARING ALLOYS [A] | sa). FITV | STOR | 122 | | COPPER-LEAD BEARING ALLOYS | sien, ca | amus. | 123 | | Frictional behaviour of steel, copper, and lead | (N) | (C) | 124 | | Thin films of lead on copper | [14] 10 | Relate | 124 | | Copper–lead alloys | (a): | Fibre | 125 | | Effect of wear on the friction | n least | DARK | 126 | | Effect of temperature on friction | | 4. | 128 | | Role of thin films in bearing alloys | | 1070 | | | Comparative behaviour of dendritic and non-dentritic alloys | | | | | WHITE-METAL BEARING ALLOYS | | | | | Lead-base alloys: structure and hardness | 10 3985 | nthại | 132 | | Unlubricated surfaces | matile i | Rifer | 134 | | Lubricated surfaces | | | | | The role of the matrix and the hard particles | | | | | Tin-base alloys: structure and hardness | | | | | Unlubricated surfaces | | | | | Lubricated surfaces | | | | | Comparison of lead-base and tin-base bearing alloys . | वि क्षाप्रध | stolet. | 139 | | SILVER-LEAD BEARINGS | DIME | Ouga | 140 | | EFFECT OF TEMPERATURE CHANGES ON BEARING ALLOYS . | SHORULK: | | 140 | | THE ROLE OF THE SOFT CONSTITUENT IN BEARING ALLOYS | | ATPULIN | | | | aspl 16 | | | | CHAPTER VII. FRICTION OF CLEAN SURFACES: EF | FECT | | | | | | | | | CONTAMINANT FILMS | ega lo s | Effec | 12 EC | | CONTAMINANT FILMS | ega lo : | Effect | 145 | | CONTAMINANT FILMS | 556 to 1
IM)2
10 228 | Effect
right | 145
146 | | CONTAMINANT FILMS | in age
1M 2
1M 2
1M 2
1M 3
1M 2
1M 3
1M 3
1M 3
1M 3
1M 3
1M 3
1M 3
1M 3 | Effect
Table
Posta
Lucid | 145
146
149 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS | t of age
2, MI
MCE, OR
cathag | Effect
Tar 7
Posts
Lubri
Bucht | 145
146
149
151 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION | t of age Line 2 Line 2 Line 2 Line 3 4 | Effect
PORTA
Lubid
BUCTI | 145
146
149
151
153 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen . | t of age
Section of
catton a
section of
sections | Effect
PORTA
LUGAT
BUCCO
E | 145
146
149
151
153
153 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension | to fage
Callega
Callega
Saverand
Saverand | Effect
PORTA
Lighti
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCTI
BUCT | 145
146
149
151
153
153 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen . | Of age Of the color c | Effect Tags 7 FORTA FORTA RUCTI RUCTI RUCTI RUCTI FORTA FORTA FORTA FORTA | 145
146
149
151
153
153 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension FRICTION OF GRAPHITE [A] | t of age cathg a cathg a second synam syna | Effect
Tage 1
Light
Light
Light
Light
Sette
Vest
Most
Alceb | 145
146
149
151
153
153
157
158 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension FRICTION OF GRAPHITE [A] CHAPTER VIII. FRICTON OF NON-METALS | t of age category and | Effect
Tan 1
Lubit
Bucco
Bucco
Section
Meets
Section | 145
146
149
151
153
153 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension FRICTION OF GRAPHITE [A] CHAPTER VIII. FRICTON OF NON-METALS Crystalline solids [A] | t of age ARCE OR ARCE OR ARCER ARCER ARCION OR OR TON OR | right I
Route
Bochan
Schan
Fally
Miceb
Saters | 145
146
149
151
153
153
157
158 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen . Friction and surface tension FRICTION OF GRAPHITE [A] . CHAPTER VIII. FRICTON OF NON-METALS Crystalline solids [A] | ACT OF CARDS CARDS OF | right I
Route
Bochan
Schan
Fally
Miceb
Saters | 145
146
149
151
153
153
157
158 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension FRICTION OF GRAPHITE [A] CHAPTER VIII. FRICTON OF NON-METALS Crystalline solids [A] Sapphire and diamond [A] Carbon, graphite, and molybdenum disulphide [A] | ACT OF CARDS CARDS OF | right I
Route
Bochan
Schan
Fally
Miceb
Saters | 145
146
149
151
153
153
157
158 | | CONTAMINANT FILMS INFLUENCE OF SURFACE FILMS Effect of adsorbed gases on metallic friction [A] Influence of oxide films on friction [A] INFLUENCE OF TEMPERATURE ON FRICTION OF CLEAN METALS INFLUENCE OF INTERFACIAL POTENTIAL ON FRICTION Effect of electrodeposited hydrogen and oxygen Friction and surface tension FRICTION OF GRAPHITE [A] CHAPTER VIII. FRICTON OF NON-METALS Crystalline solids [A] Sapphire and diamond [A] Carbon, graphite, and molybdenum disulphide [A] | Colling of | right I
Route
Bochan
Schan
Fally
Miceb
Saters | 145
146
149
151
153
153
157
158
161
161
162
163 | xvi CONTENTS | CHAPTER VIII (CONU
Tungsten | nuea)
carbide | [A | 1 | | |--------------------------------|----------------------|-------------------|-------------------|------| | Glass | | [A | | • • | | Rubber | | 4] | , , | | | Fibres | [Al . | | , | | | | LARITIES AND THE | FRICTION OF A | , | | | CHAPTER IX. BOU | NDARY FRICTI | ON OF LUB | RICATED META | LS, | | FLUID LUBRICA | TION | | , | | | BOUNDARY LUBRI | CATION BY LONG- | -CHAIN COMP | OUNDS . | | | Influence of | f chain len | gth , . | | • | | Effect | of temp | perature | [4] | | | Fatty acids | in solutio | n | | | | Lubricating Prof | PERTIES OF MONOLA | AYERS AND MU | LTILAYERS | | | Stearic acid | d films . | , . | | | | Cholesterol | | | | | | | erties of lubi | - | | | | | thickness for effe | | | | | | | | FLUORINATED HY | DRO- | | CARBONS | | | | | | | | | JBRICATED SURFACE | S | | Effect of | | | | , | | | icated surfaces at v | | | | | Effect of | speed . | • • • | | • | | CHAPTER X. MECH | ANISM OF BOU | J NDARY LU | BRICATION . | | | I MPORTANCE | оғ С неміс | AL A T | TACK | | | Lubricating | properties of | metallic se | oaps | | | STRUCTURE OF T | HE LUBRICATING | LAYER: ELE | ECTRON DIFFRACT | ΓΙΟΝ | | E XPERIM | | | . , | | | | | | ATER [A] | | | INVESTIGATION OF | SURFACE ADSORPTI | ON BY RADIO-A | стіve MетнODs [A | .] . | | Fatty acid | ls | | | | | Alcohols . | | . , | | | | Esters . | | | • | | | | | | Rs On Metals [A] | | | M ECHANISM OI | B OUNDARY | L UBRICATION | on [A] , . | | | G 371 1 C/FF | N OF EXPES | E DDEGGES | | | | CHAPTER XI. ACTIO | | | | | | Lubrication of M | | UNDS CONTAIN | ING CHLORINE. | | | | | | | | | CONTENTS | | xvii | |--|-------|------| | Compounds containing chlorine | | 230 | | Importance of chloride formation | | 232 | | LUBRICATION OF METALS BY COMPOUNDS CONTAINING SULPHUR | | 233 | | Sulphide films | | 233 | | Sulphurized compounds | | 235 | | Importance of chemical attack and of nature of surface film. | , | 237 | | PHOSPHORUS ADDITIVES | , | 238 | | REACTIVITY OF EXTREME PRESSURE AIDDITIVES [A] | , | 239 | | EXTREME PRESSURE LUBRICANTS IN THE CUTTING AND DR AWING | OF | | | METALS [A] | | 240 | | and the beginning of the | | | | CHAPTER XII. BREAKDOWN OF LUBRICANT FILMS [A]. | , | 247 | | LUBRICATION BETWEEN THE PISTON RINGS AND CYLINDER WALL O | | | | RUNNING ENGINE | Man't | | | Effect of speed | | 248 | | Effect of viscosity and temperature | | 249 | | LUBRICATION BETWEEN A JOURNAL ANI BE AR ING | • | 250 | | Effect of load, speed, viscosity, and temperature | • | 252 | | EFFECT OF TEMPERATURE ON LUBRICAL VT F ILMS | • | 254 | | CHAPTER XIII. NATURE OF CONTACT BETWEEN COLLIDI | NG | | | SOLIDS [A] | | 258 | | SPHERICAL SURFACES | | 258 | | Effect of variation in the yield press ure. | | 261 | | The coefficient of restitution | | 264 | | Comparison of static and dynamic h ardness | | 265 | | Time of impact | | 267 | | Temperature of impact | | 270 | | Effect of lubricant film | | 271 | | FLAT SURFACES | | 272 | | Pressure developed in the liquid film l . | | 275 | | Velocity of flow and rate of shear | | 279 | | Temperature developed in the liquid I film | | 279 | | PRACTICAL IMPLICATIONS | | 281 | | CHAPTER XIV. THE NATURE OF MI ETALLIC WEAR [A] | | 285 | | Local Annuaras sur W. | | 285 | | WEAR-REDUCING PROPERTIES OF THIN METALLIC FILMS. | • | 287 | | CHEMICAL REACTION AND WEAR [A] | | 290 | | IMPORTANCE OF SURFACE OXIDATION | • | 293 | | INFLUENCE OF LUBRICANT FILMS ON W EAR | • | 295 | | The state of Lobidical Lieus on W Ent. | | 233 | | INFLUENCE OF LIQUID FILMS ADHESION OF HARD SURFACES: GLASS, PLATINUM, AND SILVER Effect of surface roughness Effect of humidity Adhesion due to surface tension and viscosity ADHESION OF SOFT METALS [A] Effect of surface oxidation Adhesion in the presence of lubricant films ADHESION AND FRICTION [A] | 303
304
306
309
310
312 | |---|--| | Effect of surface roughness Effect of humidity Adhesion due to surface tension and viscosity Adhesion of Soft Metals [A] Effect of surface oxidation Adhesion in the presence of lubricant films Adhesion AND FRICTION [A] | 303
304
306
309
310
312 | | Effect of humidity Adhesion due to surface tension and viscosity Adhesion of Soft Metals [A] Effect of surface oxidation Adhesion in the presence of lubricant films Adhesion and Friction [A] | 303
304
306
309
310
312 | | Effect of humidity Adhesion due to surface tension and viscosity Adhesion of Soft Metals [A] Effect of surface oxidation Adhesion in the presence of lubricant films Adhesion and Friction [A] | 303
304
306
309
310
312 | | Adhesion due to surface tension and viscosity Adhesion of Soft Metals [A] Effect of surface oxidation Adhesion in the presence of lubricant films Adhesion and Friction [A] | 306
306
310
312 | | Adhesion of Soft Metals [A] Effect of surface oxidation Adhesion in the presence of lubricant films Adhesion and Friction [A] | 306
309
310
312 | | Adhesion in the presence of lubricant films Adhesion and Friction [A] | 310 | | Adhesion in the presence of lubricant films Adhesion and Friction [A] | 310 | | Adhesion and Friction [A] | 312 | | | | | CHAPTER XVI. CHEMICAL REACTION PRODUCED BY FRICTION AND IMPACT [A] | | | INFLUENCE OF PRESSURE, OF SHEAR, AND OF SURFACE TEMPERATURE | 315 | | EFFECT OF FRICTION ON PHOTOGRAPHIC PLATES | 315 | | DECOMPOSITION OF EXPLOSIVES | 317 | | Initiation by friction | 317 | | Initiation by impact | 317 | | Friction between particles | 318 | | Friction between particles | 319 | | APPENDIX. SOME TYPICAL VALUES OF FRICTION | 322 | | ADDENDA , street, best reals | 328 | | AUTHOR INDEX | 364 | | SUBJECT INDEX | 366 |