| Prefac | e | xxvii | |--------|--|-------| | Nome | nclature | XXXV | | 1 🌉 [| BASIC CONCEPTS OF THERMODYNAMICS | 1 | | 1-1 | Thermodynamics and Energy | 2 | | 1-2 | A Note on Dimensions and Units | 3 | | 1-3 | Closed and Open Systems | 8 | | 1-4 | Forms of Energy | 9 | | 1-5 | Properties of a System | 15 | | 1-6 | State and Equilibrium | 16 | | 1-7 | Processes and Cycles | 17 | | 1-8 | The State Postulate | 18 | | 1-9 | Pressure | 19 | | 1-10 | Temperature and the Zeroth Law of Thermodynamics | 23 | | 1-11 | Thermodynamic Aspects of Biological Systems | 27 | | 1-12 | Summary | 34 | | | References and Suggested Reading | 36 | | | Problems | 36 | | XI | 2 🗷 P | ROPERTIES OF PURE SUBSTANCES | 47 | |----------|-------|---|-----| | | 2-1 | Pure Substance | 48 | | Contents | 2-2 | Phases of a Pure Substance | 48 | | | 2-3 | Phase-Change Processes of Pure Substances | 49 | | | 2-4 | Property Diagrams for Phase-Change Processes | 55 | | | 2-5 | Vapor Pressure and Phase Equilibrium | 62 | | | 2-6 | Property Tables | 66 | | | 2-7 | The Ideal-Gas Equation of State | 77 | | | 2-8 | Compressibility Factor-A Measure of Deviation from Ideal-Gas Behavior | 79 | | | 2-9 | Other Equations of State | 84 | | | 24 10 | Summary | 88 | | | | References and Suggested Reading | 90 | | | | Problems | 90 | | | | THE FIRST LAW OF THERMODYNAMICS:
CLOSED SYSTEMS | 103 | | | 3-1 | Introduction | 104 | | | 3-2 | Heat Transfer | 104 | | | 3-3 | Work | 111 | | | 3-4 | Mechanical Forms of Work | 115 | | | 3-5 | The First Law of Thermodynamics | 127 | | | 3-6 | A Systematic Approach to Problem Solving | 133 | | | 3-7 | Specific Heats | 140 | | | 3-8 | Internal Energy, Enthalpy, and Specific Heats of Ideal Gases | 142 | | | 3-9 | Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids | 151 | | | 3-10 | Refrigeration and Freezing of Foods | 155 | | | 3-11 | Summary | 166 | | | | References and Suggested Reading | 168 | | | | Problems | 168 | THE FIRST LAW OF THERMODYNAMICS: Thermodynamic Analysis of Control Volumes 193 194 200 CONTROL VOLUMES The Steady-Flow Process **4-1** 4-2 | 4-3 Some Steady-Flow Engineering Devices | 204 | xi | |--|-----|----------| | 4-4 Unsteady-Flow Processes | 220 | 0 | | 4-5 Summary | 228 | Contents | | References and Suggested Reading | 230 | | | Problems | 230 | | | | | | | 5 THE SECOND LAW OF THERMODYNAMICS | 251 | | | 5-1 Introduction to the Second Law of Thermodynamics | 252 | | | 5-2 Thermal Energy Reservoirs | 253 | | | 5-3 Heat Engines | 254 | | | 5-4 Energy Conversion Efficiencies | 260 | | | 5-5 Refrigerators and Heat Pumps | 265 | | | 5-6 Perpetual-Motion Machines | 271 | | | 5-7 Reversible and Irreversible Processes | 273 | | | 5-8 The Carnot Cycle | 278 | | | 5-9 The Carnotl Principles | 281 | | | 5-10 The Thermodynamic Temperature Scale | 282 | | | 5-l 1 The Carnot Heat Engine | 284 | | | 5-12 The Carnot Refrigerator and Heat Pump | 288 | | | 5-13 Household Refrigerators | 291 | | | 5-14 Summary | 295 | | | References and Suggested Reading | 297 | | | Problems | 297 | | | | | | | 6 № ENTROPY: A MEASURE OF DISORDER | 319 | | | 64 1 Entropy | 320 | | | 6-2 The Increase of Entropy Principle | 324 | | | 6-3 Entropy Change of Pure Substances | 327 | | | 6-4 Isentropic Processes | 331 | | | 6-5 What Is Entropy? | 333 | | | 6-6 Property Diagrams Involving Entropy | 337 | | | 6-7 The T ds Relations | 339 | | | 6-8 Entropy Change of Liquids and Solids | 341 | | | 6-9 The Entropy Change of Ideal Gases | 344 | | | 6-10 Reversible Steady-Flow Work | 352 | | | 6-11 Minimizing the Compressor Work | 356 | | | 6-112 | Reducing the Cost of Compressed Air | 360 | |------------|--|-----| | 6-113 | Isentropic Efficiencies of Steady-Flow Devices | 370 | | 6-114 | Entropy Balance | 378 | | 6-15 | Summary | 392 | | | References and Suggested Reading | 395 | | | Problems | 396 | | 7 E | XERGY: A MEASURE OF WORK POTENTIAL | 419 | | 7-1 | Exergy: Work Potential of Energy | 420 | | 7-2 | Reversible Work and Irreversibility | 423 | | 7-3 | Second-Law Efficiency n _{II} | 427 | | 7-4 | Exergy Associated with ke, pe, u , Pv , and h | 430 | | 7-5 | Exergy Change of a System | 434 | | 7-6 | Exergy Transfer by Heat, Work, and Mass | 438 | | 7-7 | The Decrease of Exergy Principle and Exergy Destruction | 441 | | 7-8 | Exergy Balance: Closed Systems | 442 | | 7-9 | Exergy Balance: Control Volumes | 455 | | 7-10 | Second-Law Aspects of Daily Life | 463 | | 7-11 | Summary | 467 | | | References and Suggested Reading | 469 | | | Problems | 470 | | 8 | GAS POWER CYCLES | 487 | | 8-1 | Basic Considerations in the Analysis of Power Cycles | 488 | | 8-2 | The Carnotl Cycle and Its Value in Engineering | 490 | | 8-3 | Air-Standard Assumptions | 492 | | 8-4 | An Overview of Reciprocating Engines | 493 | | 8-5 | Otto Cycle: The Ideal Cycle for Spark-Ignition Engines | 494 | | 8-6 | Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines | 500 | | 8-7 | Stirling and Ericsson Cycles | 504 | | 8-8 | Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines | 508 | | 8-9 | The Brayton Cycle with Regeneration | 516 | | 8-10 | The Brayton Cycle with Intercooling, Reheating, and Regeneration | 519 | Ideal Jet-Propulsion Cycles 8-11 519 523 xii | 8-12
8-13 | Second-Law Analysis of Gas Power Cycles
Summary | 530
533 | |--------------|---|------------| | 0 13 | References and Suggested Reading | 535 | | | Problems | 536 | | | Troblems | 550 | | | | | | 9 | VAPOR AND COMBINED POWER CYCLES | 555 | | 9-1 | The Carnot Vapor Cycle | 556 | | 9-2 | Rankine Cycle: The Ideal Cycle for Vapor Power Cycles | 557 | | 9-3 | Deviation of Actual Vapor Power Cycles
from Idealized Ones | 561 | | 9-4 | How Can We Increase the Efficiency of the Rankine Cycle? | 564 | | 9-5 | The Ideal Reheat Rankine Cycle | 568 | | 9-6 | The Ideal Regenerative Rankine Cycle | 571 | | 9-7 | Second-Law Analysis of Vapor Power Cycles | 580 | | 9-8 | Cogenerat ion | 582 | | 9-9 | Binary Vapor Cycles | 587 | | 9-10 | Combined Gas-Vapor Power Cycles | 589 | | 9-11 | Summary | 592 | | | References and Suggested Reading | 594 | | | Problems | 595 | | | | | | 10 | REFRIGERATION CYCLES | 615 | | 10-1 | Refrigerators and Heat Pumps | 616 | | 10-2 | The Reversed Carnotl Cycle | 617 | | 10-3 | The Ideal Vapor-Compression Refrigeration Cycle | 619 | | 10-4 | Actual Vapor-Compression Refrigeration Cycles | 623 | | 10-5 | Selecting the Right Refrigerant | 625 | | 10-6 | Heat Pump Systems | 627 | | 10-7 | Innovative Vapor-Compression Refrigeration Systems | 628 | | 10-8 | Gas Refrigeration Cycles | 637 | | 10-9 | Absorption Refrigeration Systems | 640 | | 10-1 | O Thermoelectric Power Generation and Refrigeration Systems | 644 | | 10-1 | 1 Summary | 646 | | | References and Suggested Reading | 647 | | | Problems | 648 | xiii | 11 | THERMODYNAMIC PROPERTY RELATIONS | 663 | |-------|--|-----| | 1 1-1 | A Little Math-Partial Derivatives and Associated Relations | 664 | | 11-2 | The Maxwell Relations | 669 | | 11-3 | The Clapeyron Equation | 670 | | 1 1-4 | General Relations for du , dh , ds , C_v , and C_p | 673 | | 1 1-5 | The Joule-Thompson Coefficient | 680 | | 11-6 | The Ah, Au, and As of Real Gases | 682 | | 1 1-7 | Summary | 687 | | | References and Suggested Reading | 689 | | | Problems | 689 | | 12 | GAS MIXTURES | 697 | | 12-1 | The Composition of a Gas Mixture: Mass and Mole Fractions | 698 | | 12-2 | P-v-T Behavior of Gas Mixtures: Ideal and Real Gases | 700 | | 12-3 | Properties of Gas Mixtures: Ideal and Real Gases | 705 | | 12-4 | Summary | 713 | | | References and Suggested Reading | 715 | | | Problems | 715 | | 13 | GAS-VAPOR MIXTURES AND AIR-CONDITIONING | 723 | | 13-11 | Dry and Atmospheric Air | 724 | | 13-2 | Specific and Relative Humidity of Air | 725 | | 13-3 | Dew-Point Temperature | 727 | | 13-4 | Adiabatic Saturation and Wet-Bulb Temperatures | 729 | | 13-5 | The Psychrometric Chart | 732 | | 13-6 | Human Comfort and Air-Conditioning | 733 | | 13-7 | Air-Conditioning Processes | 735 | | 13-8 | Summary | 748 | | | References and Suggested Reading | 750 | | | Problems | 751 | | 14 | CHEMICAL REACTIONS | 763 | | 14-1 | Fuels and Combustion | 764 | | 14-2 | Theoretical and Actual Combustion Processes | 767 | | 14-3 | Enthalpy of Formation and Enthalpy of Combustion | 772 | | 14-4 | First-Law Analysis of Reacting, Systems | 776 | xiv | 14-5 | Adiabatic Flame Temperature | 781 | ΧV | |-------|--|------------|-----------| | 14-6 | Entropy Change of Reacting Systems | 784 | Ocastonia | | 14-7 | Second-Law Analysis of Reacting Systems | 786 | Contents | | 14-8 | Summary | 792 | | | | References and Suggested Reading | 795 | | | | Problems | 795 | | | 15 🛎 | CHEMICAL AND PHASE EQUILIBRIUM | 809 | | | 15-1 | Criterion for Chemical Equilibrium | 810 | | | 15-2 | The Equilibrium Constant for Ideal-Gas Mixtures | 812 | | | 15-3 | Some Remarks About the K_p of Ideal-Gas Mixtures | 815 | | | 15-4 | Chemical Equilibrium for Simultaneous Reactions | 820 | | | 15-5 | Variation of K_p with Temperature | 822 | | | 15-6 | Phase Equilibrium | 823 | | | 15-7 | Summary | 832 | | | | References and Suggested Reading | 834 | | | | Problems | 834 | | | | | | | | 16 🛚 | THERMODYNAMICS OF HIGH-SPEED GAS FLOW | 843 | | | 16-1 | Stagnation Properties | 844 | | | 16-2 | Velocity of Sound and Mach Number | 848 | | | 16-3 | One-Dimensional Isentropic Flow | 852 | | | 16-4 | Isentropic Flow through Nozzles | 859 | | | 16-5 | Normal Shocks in Nozzle Flow | 867 | | | 16-6 | Flow through Actual Nozzle and Diffusers | 873 | | | 16-7 | Steam Nozzles | 879 | | | 16-8 | Summary | 882 | | | | References and Suggested Reading | 886 | | | | Problems | 886 | | | | | | | | APP | ENDIX 1 PROPERTY TABLES AND CHAR
(SI UNITS) | RTS
897 | | | Table | A-1 Molar Mass, Gas Constant,
and Critical-Point Properties | 898 | | | Table | A-2 Ideal-Gas Specific Heats
of Various Common Gases | 899 | | | Table A-3 | Properties of Common Liquids, Solids, and Foods | 902 | |--------------|--|-----| | Table A-4 | Saturated Water-Temperature Table | 904 | | Table A-S | Saturated Water-Pressure Table | 906 | | Table A-6 | Superheated Water | 908 | | Table A-7 | Compressed Liquid Water | 912 | | Table A-8 | Saturated Ice-Water Vapor | 913 | | Figure A-9 | T-s Diagram for Water | 914 | | Figure A- 10 | Mollier Diagram for Water | 915 | | Table A-1 | Saturated Refrigerant-134a—Temperature Table | 916 | | Table A- 12 | Saturated Refrigerant-134a—Pressure Table | 917 | | Table A-13 | Superheated Refrigerant-134a | 918 | | Table A-14 | P-h Diagram for Refrigerant-134a | 920 | | Table A-15 | One-Dimensional Isentropic Compressible-Flow Functions for an Ideal Gas with Constant Specific Heats and Molar Mass, and $k = 1.4$ | 921 | | Table A- 16 | One-Dimensional Normal-Shock Functions for an Ideal Gas with Constant Specific Heats and Molar Mass, and $k = 1.4$ | 922 | | Table A- 17 | Ideal-Gas Properties of Air | 923 | | Table A- 18 | Ideal-Gas Properties of Nitrogen, N2 | 925 | | Table A- 19 | Ideal-Gas Properties of Oxygen, O2 | 927 | | Table A-20 | Ideal-Gas Properties of Carbon Dioxide, CO ₂ | 929 | | Table A-2 | Ideal-Gas Properties of Carbon Monoxide, CO | 931 | | Table A-22 | Ideal-Gas Properties of Hydrogen, H ₂ | 933 | | Table A-23 | Ideal-Gas Properties of Water Vapor, H ₂ O | 934 | | Table A-24 | Ideal-Gas Properties of Monatomic Oxygen, O | 936 | | Table A-25 | Ideal-Gas Properties of Hydroxyl, OH | 936 | | Table A-26 | Enthalpy of Formation, Gibbs Function of Formation, and Absolute Entropy at 25°C, 1 atm | 937 | | Table A-27 | Enthalpy of Combustion and Enthalpy of Vaporization at 25°C, 1 atm | | | Table A-28 | Logarithms to the Base e of the Equilibrium Constant K_p | 938 | | Table A-29 | Constants that Appear in the Beattie-Bridgeman and the Benedict-Webb-Rubin Equations of State | 939 | | | Nelson-Obert Generalized Compressibility Charts | 940 | | Figure A-30 | equitate = 12 - 4ga (1,000 ± 1000 1,000 1,000 ± 1000 1,000 | 941 | xvi | Figure A-3 I | Generalized Enthalpy Departure Chart | 944 | |----------------|---|-----| | Figure A-32 | Generalized Entropy Departure Chart | 945 | | Figure A-33 | Psychrometric Chart at 1 atm Total Pressure | 946 | | | | | | APPENDIX 2 | PROPERTY TABLES AND CHARTS (ENGLISH UNITS) | 947 | | Table A- I E | Molar Mass, Gas Constant,
and Critical-Point Properties | 948 | | Table A-2E | Ideal-Gas Specific Heats
of Various Common Gases | 949 | | Table A-3E | Properties of Common Liquids, Solids, and Foods | 952 | | Table A-4E | Saturated Water-Temperature Table | 954 | | Table A-SE | Saturated Water-Pressure Table | 955 | | Table A-6E | Superheated Water | 957 | | Table A-7E | Compressed Liquid Water | 961 | | Table A-8E | Saturated Ice—Water Vapor | 962 | | Table A-9E | T-s Diagram for Water | 963 | | Table A- 10E | Mollier Diagram for Water | 964 | | Table A- 11I E | Saturated Refrigerant-134a—Temperature Table | 965 | | Table A- 12E | Saturated Refrigerant-134a—Pressure Table | 966 | | Table A-13E | Superheated Refrigerant-134a | 967 | | Figure A-1I4E | P-h Diagram for Refrigerant-134a | 969 | | Table A- 17E | Ideal-Gas Properties of Air | 970 | | Table A-18E | Ideal-Gas Properties of Nitrogen, N ₂ | 972 | | Table A- 19E | Ideal-Gas Properties of Oxygen, O2 | 974 | | Table A-20E | Ideal-Gas Properties of Carbon Dioxide, CO ₂ | 976 | | Table A-2 E | Ideal-Gas Properties of Carbon Monoxide, CO | 978 | | Table A-22E | Ideal-Gas Properties of Hydrogen, H ₂ | 980 | | Table A-23E | Ideal-Gas Properties of Water Vapor, H ₂ O | 981 | | Table A-26E | Enthalpy of Formation, Gibbs Function of Formation, and Absolute Entropy at 77°F, 1 atm | 983 | | Table A-27E | Enthalpy of Combustion and Enthalpy of Vaporization at 77°F, 1 atm | 984 | | Table A-29E | Constants that Appear in the Beattie-Bridgeman and the Benedict-Webb-Rubin Equations of State | 985 | | Table A-33E | Psychrometric Chart at 1 atm Total Pressure | 986 | xvii | | INDEX | 1001 | |----------|--|------| | | Loading a Textbook File | 998 | | | A Thermodynamics Example Problem | 991 | | | Background Information | 987 | | Content5 | Overview | 987 | | xviii | APPENDIX 3 ABOUT THE SOFTWARE: INTRODUCTION TO EES | 987 |