Contenidos

1	Intr	oducción	11
	1.1	Motivación de este trabajo	11
	1.2	Derivación de los Solvers de Navier-Stokes	12
		1.2.1 Descripción matemática de los solvers de Navier-Stokes .	12
	1.3	Organización del trabajo	
2	Mét	odos de Resolución	15
	2.1	Ecuaciones de Gobierno y Formulación de Galerkin	15
		2.1.1 Ecuaciones de Navier-Stokes	15
		2.1.2 Formulación de Galerkin estándar	16
		2.1.3 Lema de Verfürth	17
		2.1.4 Desventajas de la formulación de Galerkin	17
	2.2	Métodos acoplados estabilizados	18
		2.2.1 Métodos SGS, GLS, SUPG	18
		2.2.2 Implementación para las ecuaciones de N.S. incompresibles	20
		2.2.3 Estabilización SPGP	21
		2.2.4 Formulación final de los métodos acoplados y estabilizados	22
	2.3	Métodos de proyección	
		2.3.1 Descomposición de Hodge	23
		2.3.2 El operador proyector	23
		2.3.3 El método de proyección	24
		2.3.4 El método de Chorin	25
		2.3.5 Algoritmo de Chorin desacoplado	26
		2.3.6 Método de Chorin desacoplado y estabilizado	27
		2.3.7 El método de proyección a partir de la Formulación Va-	
		riacional	28
3	Solv	er de Navier-Stokes por Bloques	31
		El Método de Proyección Discreto	
	3.2	Implementación del Solver por Bloques en PARGPFEP	33
		3.2.1 Selección de Solver	33

3.2.2 Descripción de la función nsbsSolve	33 35
3.2.4 Adecuación de las tolerancias para los distintos métodos	
de resolución	37
3.3 Cálculo analítico de la matriz de masas	38
3.4 Ejemplo con nsbsSolve	39
4 Resultados Numéricos	43
4.1 Caso 1: Flujo Vorticoso	44
4.1.1 Definición del caso de prueba	44
4.1.2 Análisis de los datos	46
4.2 Caso 2: Flujo a través de un cilindro ubicado asimétricamente	52
4.2.1 Definición del caso de prueba	52
4.2.2 Análisis de los datos	53
4.3 Otros ejemplos: Convección y Difusión	60
5 Conclusiones	65