Contents

Preface	ix	
Chapter 1 Introduction to Control Systems	1	
1-1 Introduction 1		
1-2 Examples of Control Systems 3		
1-3 Closed-Loop Control Versus Open-Loop Control 6		
1-4 Design of Control Systems 8		
1-5 Outline of the Book 9		
Example Problems and Solutions 10		
Problems 11		
Chapter 2 The Laplace Transform	13	
2-1 Introduction 13		
2-2 Review of Complex Variables and Complex Functions	14	
2-3 Laplace Transformation 17		
2-4 Laplace Transform Theorems 27		
2-5 Inverse Laplace Transformation 35		
2-6 Partial-Fraction Expansion with MATLAB 41		

111

Chapter 3 Mathematical Modeling of Dynamic Systems

57

3-l	Introduction 57	
3-2	Transfer Function and Impulse-Response Function 60	
3-3	Block Diagrams 63	
3-4	Modeling in State Space 70	
3-5	State-Space Representation of Dynamic Systems 76	
3-6	Mechanical Systems 81	
3-7	Electrical Systems 87	
3-8	Liquid-Level Systems 92	
3-9	Thermal Systems 96	
3-10	Linearization of Nonlinear Mathematical Models 100	
	Example Problems and Solutions 105	
	Problems 129	
Chaj	pter 4 Transient-Response Analysis	134
4-1	Introduction 134	
4-2	First-Order Systems 136	
4-3	Second-Order Systems 141	
4-4	Transient-Response Analysis with MATLAB 160	
4-5	An Example Problem Solved with MATLAB 178	
	Example Problems and Solutions 187	
	Problems 207	
Cha	pter 5 Basic Control Actions and Response of Control Systems	211
5-1	Introduction 211	
5-2	Basic Control Actions 212	
5-3	Effects of Integral and Derivative Control Actions on System Performance 219	
5-4	Higher-Order Systems 228	
5-5	Routh's Stability Criterion 232	
5-6	Pneumatic Controllers 238	
5-7	Hydraulic Controllers 255	
5-8	Electronic Controllers 262	
5-9	Phase Lead and Phase Lag in Sinusoidal Response 269	
) Steady-State Errors in Unity-Feedback Control Systems 274	

Contents

Example Problems and Solutions 282 Problems 309

Chapter 6 Root-Locus Analysis 317 6-1 Introduction 317 6-2 Root-Locus Plots 319 6-3 Summary of General Rules for Constructing Root Loci 330 6-4 Root-Locus Plots with MATLAB 338 6-5 Special Cases 348 6-6 Root-Locus Analysis of Control Systems 357 6-7 Root Loci for Systems with Transport Lag 360 6-8 Root-Contour Plots 364 Example Problems and Solutions 368 Problems 400 Chapter 7 Control Systems Design by the Root-Locus Method 404 7-1 Introduction 404 7-2 Preliminary Design Considerations 407 7-3 Lead Compensation 409 7-4 Lag Compensation 418 7-5 Lag-Lead Compensation 427 Example Problems and Solutions 439 Problems 467 471 **Chapter 8 Frequency-Response Analysis** 8-1 Introduction 471 8-2 Bode Diagrams 473 8-3 Plotting Bode Diagrams with MATLAB 492 8-4 Polar Plots 504 8-5 Drawing Nyquist Plots with MATLAB 512 8-6 Log-Magnitude versus Phase Plots 519 8-7 Nyquist Stability Criterion 521 8-8 Stability Analysis 532 8-9 Relative Stability 542 8-10 Closed-Loop Frequency Response 556 8-11 Experimental Determination of Transfer Functions 567 Example Problems and Solutions 573 Problems 605

Chapter 9 Co	ntrol Systems Design By	Frequency Response	609
9-3 Lag Com9-4 Lag-Lead9-5 Concluding	mpensation 612 opensation 621 Compensation 630 og Comments 636 Problems and Solutions 6	539	
Chapter 10 Pl	D Controls and Introduct	tion to Robust Control	669
10-3 Modificat10-4 Two-Deg10-5 Design C	tules for PID Controllers 6 tions of PID Control Scher rees-of-Freedom Control considerations for Robust C Problems and Solutions	mes 679 683	
Chapter 11 A	nalysis of Control Syster	ns in State Space	710
 11-3 Transform 11-4 Solving 7 1 1-5 Some Use 11-6 Controlla 11-7 Observab 	ce Representations of Tran nation of System Models w The Time-Invariant State E eful Results in Vector-Matri ability 737 bility 743 Problems and Solutions 7	ith MATLAB 718 Equation 722	711
Chapter 12 E	esign of Control System	s in State Space	786
12-4 Design of 12-5 State Ob 12-6 Design of	cement 787 Pole-Placement Problems w f Regulator-Type Systems b	by Pole Placement 803	

Contents

12-8 Example of Control System Design with MATLAB 852 Example Problems and Solutions 864	
Problems 893 Chapter 13 Liapunov Stability Analysis and Quadratic Optimal Control	89
13-1 Introduction 896	
13-2 Liapunov Stability Analysis 897	
13-3 Liapunov Stability Analysis of Linear, Time-Invariant Systems 907	
13-4 Model-Reference Control Systems 912	
13-5 Quadratic Optimal Control 915	
13-6 Solving Quadratic Optimal Control Problems with MATLAB 925	
Example Problems and Solutions 935	
Problems 958	
Appendix Background Materials Necessary for the Effective Use of MATLAB	96
A-1 Introduction 960	
A-2 Plotting Response Curves 965	
A-3 Computing Matrix Functions 967	
A-4 Mathematical Models of Linear Systems 977	
References	98
Index	98 ′