
Preface

This book is based on a two-semester course in “The Mathematical
Methods of Physics” which I have given in the mathematics department
of the University of Illinois in recent years. The audience has consisted
primarily of physicists, engineers, and other natural scientists in their first
or second year of graduate study. Knowledge of the theory of functions
of real and complex variables is assumed.

The subject matter has been shaped by the needs of the students and by
my own experience. In many cases students who do not major in mathe-
matics have room in their schedules for only one or two mathematics
courses. The purpose of this book, therefore, is to provide the student
with some heavy artillery in several fields of mathematics, in confidence
that targets for these weapons will be amply provided by the student’s own
special field of interest. Naturally, in such an attempt, something must be
sacrificed, and I have regarded as most expendable discussions of physical
applications of the material being presented.

Again, in the short space allotted to each subject there is little chance to
develop the theory beyond fundamentals. Thus in each chapter I have
gone straight to (what I regard as) the heart of the matter, developing a
subject just far enough so that applications can easily be made by the
student himself. The exercises at the end of each chapter, along with their
solutions at the back of the book, afford some further opportunities for
using the theoretical apparatus.

The material herein is, for the most part, classical. The bibliographical
references, particularly to journal articles, are given not so much to
provide a jumping-off point for further research as to give the reader a
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feeling for the chronological development of these subjects and for the
names of the men who created them.

Finally, I have, where possible, tried to say something about numerical
methods for computing the solutions of various kinds of problems. These
discussions, while brief, are oriented toward electronic computers and are
intended to help bridge the gap between the “there exists” of a pure
mathematician and the “find it to three decimal places” of an engineer.

I am indebted to Professor L. A. Rubel for permission to publish
Theorem 7 of Chapter 3 here for the first time and to Professor R. P.
Jerrard for some of the exercises in Chapter 7. To the well-known volume
of Courant and Hilbert I owe the intriguing notion that, even in an age of
specialization, it may be possible for physicists and mathematicians to
understand each other.

HERBERT S. WILF
Philadelphia, Pennsylvania
March, 1962
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