
PARALLEL PROGRAMMING
TECHNIQUES AND APPLICATIONS

USING NETWORKED WORKSTATIONS
AND PARALLEL COMPUTERS

BARRY WILKINSON
University of North Carolina - Charlotte

MICHAEL ALLEN
University~ of North Carolina - Charlotte

An Alan R. Apt Book

PRENTICE HALL, Upper Saddle River, New Jersey 07458

The purpose of this text is to introduce parallel programming techniques. Parallel program-
ming uses multiple computers, or computers with multiple internal processors, to solve a
problem at a greater computational speed than using a single computer. It also offers the
opportunity to tackle larger problems; that is, problems with more computational steps or
more memory requirements, the latter because multiple computers and multiprocessor
systems often have more total memory than a single computer. In this text, we concentrate
upon the use of multiple computers that communicate between themselves by sending
messages; hence the term message-passing parallel programming. The computers we use
can be different types (PC, SUN, SGI, etc.) but must be interconnected by a network, and
a software environment must be present for intercomputer message passing. Suitable
networked computers are very widely available as the basic computing platform for
students so that acquisition of specially designed multiprocessor systems can usually be
avoided. Several software tools are available for message-passing parallel programming,
including PVM and several implementations of MPI, which are all freely available. Such
software can also be used on specially designed multiprocessor systems should these
systems be available for use. So far as practicable, we discuss techniques and applications
in a system-independent fashion.

The text is divided into two parts, Part I and Part II. In Part I, the basic techniques of
parallel programming are developed. The chapters of Part I cover all the essential aspects,
using simple problems to demonstrate techniques. The techniques themselves, however,
can be applied to a wide range of problems. Sample code is given usually first as sequential
code and then as realistic parallel pseudocode. Often, the underlying algorithm is already
parallel in nature and the sequential version has “unnaturally” serialized it using loops. Of
course, some algorithms have to be reformulated for efficient parallel solution, and this
reformulation may not be immediately apparent. One chapter in Part I introduces a type of

V

parallel programming not centered around message-passing multicomputers, but around
specially designed shared memory multiprocessor systems. This chapter describes the use
of Pthreads, an IEEE multiprocessor standard system that is widely available and can be
used on a single computer.

The prerequisites for studying Part I are knowledge of sequential programming, such
as from using the C language and associated data structures. Part I can be studied immedi-
ately after basic sequential programming has been mastered. Many assignments here can
be attempted without specialized mathematical knowledge. If MPI or PVM is used for the
assignments, programs are written in C with message-passing library calls. The descrip-
tions of the specific library calls needed are given in the appendices.

Many parallel computing problems have specially developed algorithms, and in Part
II problem-specific algorithms are studied in both non-numeric and numeric domains. For
Part II, some mathematical concepts are needed such as matrices. Topics covered in Part II
include sorting, matrix multiplication, linear equations, partial differential equations, image
processing, and searching and optimization. Image processing is particularly suitable for
parallelization and is included as an interesting application with significant potential for
projects. The fast Fourier transform is discussed in the context of image processing. This
important transform is also used in many other areas, including signal processing and voice
recognition.

A large selection of “real-life” problems drawn from practical situations is presented
at the end of each chapter. These problems require no specialized mathematical knowledge
and are a unique aspect of this text. They develop skills in using parallel programming tech-
niques rather than simply learning to solve specific problems such as sorting numbers or
multiplying matrices.

Topics in Part I are suitable as additions to normal sequential programming classes.
At the University of North Carolina at Charlotte (UNCC), we introduce our freshmen
students to parallel programming in this way. In that context, the text is a supplement to a
sequential programming course text. The sequential programming language is assumed to
be C or C++. Part I and Part II together is suitable as a more advanced undergraduate
parallel programming/computing course, and at UNCC we use the text in that manner.

Full details of the UNCC environment and site-specific details can be found at
http://www.cs.uncc.edu/par-prog. Included at this site are extensive Web pages to help
students learn how to compile and run parallel programs. Sample programs are provided.
An Instructor’s Manual is also available to instructors. Our work on teaching parallel pro-
gramming is connected to that done by the Regional Training Center for Parallel Processing
at North Carolina State University. Additional information about this center can be found
at http://renoir.csc.ncsu.edu/RTCPP.

The text is a direct outcome of a National Science Foundation grant awarded to the
authors at the University of North Carolina at Charlotte to introduce parallel programming
in the freshman year.’ It is a great pleasure to acknowledge Dr. M. Mulder, program director
at the National Science Foundation, for supporting our project. Without his support, we
would not be able to pursue the ideas presented in this text. We also wish to thank the
graduate students that worked on this project, J. Alley, M. Antonious, M. Buchanan, and G.

‘National Science Foundation grant “Introducing parallel programming techniques into the freshman cur-
ricula,” ref. no. DUE 9554975.

vi Preface

Robins, and undergraduate students G. Feygin, W. Hasty, C. Beauregard, M. Moore, D.
Lowery, K. Patel, Johns Cherian, and especially Uday Kamath. This team helped develop
the material and assignments with us. We should like to record our thanks to James
Robinson, the departmental system administrator who established our local workstation
cluster, without which we would not have been able to conduct the work.

We should also like to thank the many students at UNCC who help us refine the
material over the last few years, especially the ”“teleclasses, in which the materials were
classroom tested in a unique setting. These teleclasses are broadcast to several North
Carolina universities, including UNC-Asheville, UNC-Greensboro, UNC-Wilmington,
and North Carolina State University, in addition to UNCC. We owe a debt of gratitude to
many people, among which Professor Wayne Lang at UNC-Asheville and Professor
Mladen Vouk of NC State University deserve special mention. Professor Lang truly con-
tributed to the course development in the classroom and Professor Vouk, apart from pre-
senting an expert guest lecture for us, set up an impressive Web page that included “real
audio” of our lectures and “automatically turning” slides. (These lectures can be viewed at
http:renoir.csc.ncsu.edu/CSC495A.) Professor John Board of Duke University and
Professor Jan Prins of UNC Chapel Hill also kindly made expert guest presentations to
classes. A parallel programming course based upon the material in this text was also given
at the Universidad National de San Luis in Argentina by kind invitation from Professor
Raul Gallard - all these activities helped us in developing this text.

We would like to express our appreciation to Alan Apt and Laura Steele of Prentice
Hall, who received our proposal for a textbook and supported us throughout its develop-
ment. Reviewers provided us with very helpful advice.

Finally, may we ask that you please send comments and corrections to us at
abw@uncc.edu (Barry Wilkinson) or cma@uncc.edu (Michael Allen).

Barry Wilkinson
Michael Allen
University of North Carolina
Charlotte

Preface vii

Contents

Preface

About the Authors

PART I BASIC TECHNIQUES

CHAPTER 1 PARALLEL COMPUTERS

V

VIII

1

3

1.1

1.2

1.3

The Demand for Computational Speed 3

Types of Parallel Computers 6
Shared Memory Multiprocessor System, 6
Message-Passing Multicomputer 7
Distributed Shared Memory, 9
MIMD and SIMD Classifications, 10

Architectural Features of Message-Passing Multicomputers 11
Static Network Message-Passing Multicomputers, 11
Embedding, 16
Communication Methods, 18
Input/Output, 22

1.4 Networked Computers as a Multicomputer Platform 22

1..5 Potential for Increased Computational Speed 26

1.6 Summary 32

Further Reading 32

Bibliography 33

Problems 36

ix

CHAPTER 2 MESSAGE-PASSING COMPUTING 38

2.1

2.2

2.3

2.4

2.5

Basics of Message-Passing Programming 38
Programming Options, 38
Process Creation, 39
Message-Passing Routines, 41

Using Workstation Clusters 46
Software Tools, 46
PVM, 47
MPI, 51
Pseudocode Constructs, 59

Evaluating Parallel Programs 61
Parallel Execution Time, 61
Time Complexity, 64
Comments on Asymptotic Analysis, 67
Time Complexity of Broadcast/Gather, 68

Debugging and Evaluating Parallel Programs 7 1
Low-Level Debugging, 71
Visualization Tools, 72
Debugging Strategies, 73
Evaluating Programs Empirically, 74
Comments on Optimizing the Parallel Code, 76

Summary 77

Further Reading 77

Bibliography 78

Problems 80

CHAPTER 3 EMBARRASSINGLY PARALLEL COMPUTATIONS

3.1 Ideal Parallel Computation 82

3.2 Embarrassingly Parallel Examples 84
Geometrical Transformations of Images, 84
Mandelhrot Set, 89
Monte Carlo Methods, 95

3.3 Summary 100

Further Reading 100

Bibliography 10 1

Problems 102

X

82

Contents

CHAPTER 4 PARTITIONING AND DIVIDE-AND-CONQUER
STRATEGIES

4.1

4.2

4.3

Partitioning 107
Partitioning Strategies, 107
Divide and Conquer, 11 I
M-ary Divide and Conquer, 117

Divide-and-Conquer Examples 118
Sorting Using Bucket Sort, 118
Numerical Integration, 122
N-Body Problem, 126

Summary 131

Further Reading 13 1

Bibliography 132

Problems 133

CHAPTER 5 PIPELINED COMPUTATIONS 139

5.1

5.2

5.3

5.4

Pipeline Technique 139

Computing Platform for Pipelined Applications 143

Pipeline Program Examples 144
Adding Numbers, 144
Sorting Numbers, 147
Prime Number Generation, 151
Solving a System of Linear Equations-Special Case, 153

Summary 156

Further Reading 157

Bibliography 157

Problems 158

CHAPTER 6 SYNCHRONOUS COMPUTATIONS 162

6.1 Synchronization 162
Barrier, 162
Counter Implementation, 164
Tree Implementation, 166
Butterfly Barrier, 166
Local Synchronization, 168
Deadlock, 168

Contents

107

xi

6.2

6.3

6.4

Synchronized Computations 169
Data Parallel Computations, 169
Synchronous Iteration, 172

Synchronous Iteration Program Examples 173
Solving a System of Linear Equations by Iteration, 173
Heat Distribution Problem, 179
Cellular Automata, 188

Summary 189

Further Reading 190

Bibliography 190

Problems 191

CHAPTER 7 LOAD BALANCING AND TERMINATION DETECTION 198

7.1

7.2

7.3

7.4

7.5

Load Balancing 198

Dynamic Load Balancing 200
Centralized Dynamic Load Balancing, 201
Decentralized Dynamic Load Balancing, 202
Load Balancing Using a Line Structure, 204

Distributed Termination Detection Algorithms 207
Termination Conditions, 207
Using Acknowledgment Messages, 208
Ring Termination Algorithms, 209
Fixed Energy Distributed Termination Algorithm, 211

Program Example 2 11
Shortest Path Problem, 211
Graph Representation, 212
Searching a Graph, 214

Summary 220

Further Reading 220

Bibliography 221

Problems 222

CHAPTER 8 PROGRAMMING WITH SHARED MEMORY

8.1 Shared Memory Multiprocessors 227

8.2 Constructs for Specifying Parallelism 230
Creating Concurrent Processes, 230
Threads, 231

xii

2 2 7

Contents

8.3

8.4

8.5

Sharing Data 236
Creating Shared Data, 236
Accessing Shared Data, 236
Language Constructs for Parallelism, 244
Dependency Analysis, 245
Shared Data in Systems with Caches, 248

Program Examples 250
UNIX Processes, 251
Pthreads Example, 254
Java Example, 256

Summary 257

Further Reading 258

Bibliography 258

Problems 259

PART I I ALGORITHMS AND APPLICATIONS

CHAPTER 9 SORTING ALGORITHMS

265

267

9.1

9.2

9.3

General 267
Sorting, 267
Potential Speedup, 268
Rank Sort, 268

Compare-and-Exchange Sorting Algorithms 270
Compare and Exchange, 270
Bubble Sort and Odd-Even Transposition Sort, 273
Two-Dimensional Sorting, 277
Mergesort, 280
Quicksort, 282
Quicksort on a Hypercube, 284
Odd-Even Mergesort, 290
Bitonic Mergesort, 291

Summary 295

Further Reading 295

Bibliography 296

Problems 297

CHAPTER 10 NUMERICAL ALGORITHMS 301

10.1 Matrices - A Review 301
Matrix Addition, 301

Contents xiii

10.2

10.3

10.4

10.5

Matrix Multiplication, 302
Matrix-Vector Multiplication, 302
Relationship of Matrices to Linear Equations, 303

Implementing Matrix Multiplication 303
Algorithm, 303
Direct Implementation, 304
Recursive Implementation, 307
Mesh Implementation, 309
Other Matrix Multiplication Methods, 313

Solving a System of Linear Equations 3 13
Linear Equations, 313
Gaussian Elimination, 314
Parallel Implementation, 315

Iterative Methods 3 17
Jacobi Iteration, 318
Faster Convergence Methods, 321

Summary 326

Further Reading 326

Bibliography 326

Problems 327

CHAPTER 11 IMAGE PROCESSING

11.1

11.2

11.3

11.4

11.5

11.6

11.7

xiv

331

Low-Level Image Processing 33 1

Point Processing 333

Histogram 334

Smoothing, Sharpening, and Noise Reduction 335
Mean, 335
Median, 336
Weighted Masks, 338

Edge Detection 340
Gradient and Magnitude, 340
Edge Detection Masks, 341

The Hough Transform 344

Transformation into the Frequency Domain 348
Fourier Series, 348
Fourier Transform, 349
Fourier Transforms in Image Processing, 350
Parallelizing the Discrete Fourier Transform Algorithm, 352
Fast Fourier Transform, 356

Contents

11.8 Summary 361

Further Reading 362

Bibliography 362

Problems 364

CHAPTER 12 SEARCHING AND OPTIMIZATION

12.1 Applications and Techniques 367

12.2 Branch-and-Bound Search 368
Sequential Branch and Bound, 368
Parallel Branch and Bound, 370

12.3 Genetic Algorithms 372
Evolution and Genetic Algorithms, 372
Sequential Genetic Algorithms, 374
Initial Population, 374
Selection Process, 376
Offspring Production, 377
Variations, 379
Termination Conditions, 379
Parallel Genetic Algorithms, 380

12.4 Successive Refinement 384

12.5 Hill Climbing 385
Banking Application, 386
Hill Climbing in a Banking Application, 388
Parallelization, 389

12.6 Summary 389

Further Reading 389

Bibliography 390

Problems 39 1

APPENDIX A BASIC PVM ROUTINES 398

APPENDIX B BASIC MPI ROUTINES 404

APPENDIX C BASIC PTHREAD ROUTINES 410

APPENDIX D PARALLEL COMPUTATION MODELS 415

INDEX 426

367

Contents xv

