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The purpose of this text is to introduce parallel programming techniques. Parallel program-
ming uses multiple computers, or computers with multiple internal processors, to solve a
problem at a greater computational speed than using a single computer. It also offers the
opportunity to tackle larger problems; that is, problems with more computational steps or
more memory requirements, the latter because multiple computers and multiprocessor
systems often have more total memory than a single computer. In this text, we concentrate
upon the use of multiple computers that communicate between themselves by sending
messages; hence the term message-passing parallel programming. The computers we use
can be different types (PC, SUN, SGI, etc.) but must be interconnected by a network, and
a software environment must be present for intercomputer message passing. Suitable
networked computers are very widely available as the basic computing platform for
students so that acquisition of specially designed multiprocessor systems can usually be
avoided. Several software tools are available for message-passing parallel programming,
including PVM and several implementations of MPI, which are all freely available. Such
software can also be used on specially designed multiprocessor systems should these
systems be available for use. So far as practicable, we discuss techniques and applications
in a system-independent fashion.

The text is divided into two parts, Part I and Part II. In Part I, the basic techniques of
parallel programming are developed. The chapters of Part I cover all the essential aspects,
using simple problems to demonstrate techniques. The techniques themselves, however,
can be applied to a wide range of problems. Sample code is given usually first as sequential
code and then as realistic parallel pseudocode. Often, the underlying algorithm is already
parallel in nature and the sequential version has “unnaturally” serialized it using loops. Of
course, some algorithms have to be reformulated for efficient parallel solution, and this
reformulation may not be immediately apparent. One chapter in Part I introduces a type of
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parallel programming not centered around message-passing multicomputers, but around
specially designed shared memory multiprocessor systems. This chapter describes the use
of Pthreads, an IEEE multiprocessor standard system that is widely available and can be
used on a single computer.

The prerequisites for studying Part I are knowledge of sequential programming, such
as from using the C language and associated data structures. Part I can be studied immedi-
ately after basic sequential programming has been mastered. Many assignments here can
be attempted without specialized mathematical knowledge. If MPI or PVM is used for the
assignments, programs are written in C with message-passing library calls. The descrip-
tions of the specific library calls needed are given in the appendices.

Many parallel computing problems have specially developed algorithms, and in Part
II problem-specific algorithms are studied in both non-numeric and numeric domains. For
Part II, some mathematical concepts are needed such as matrices. Topics covered in Part II
include sorting, matrix multiplication, linear equations, partial differential equations, image
processing, and searching and optimization. Image processing is particularly suitable for
parallelization and is included as an interesting application with significant potential for
projects. The fast Fourier transform is discussed in the context of image processing. This
important transform is also used in many other areas, including signal processing and voice
recognition.

A large selection of “real-life” problems drawn from practical situations is presented
at the end of each chapter. These problems require no specialized mathematical knowledge
and are a unique aspect of this text. They develop skills in using parallel programming tech-
niques rather than simply learning to solve specific problems such as sorting numbers or
multiplying matrices.

Topics in Part I are suitable as additions to normal sequential programming classes.
At the University of North Carolina at Charlotte (UNCC), we introduce our freshmen
students to parallel programming in this way. In that context, the text is a supplement to a
sequential programming course text. The sequential programming language is assumed to
be C or C++. Part I and Part II together is suitable as a more advanced undergraduate
parallel programming/computing course, and at UNCC we use the text in that manner.

Full details of the UNCC environment and site-specific details can be found at
http://www.cs.uncc.edu/par-prog.  Included at this site are extensive Web pages to help
students learn how to compile and run parallel programs. Sample programs are provided.
An Instructor’s Manual is also available to instructors. Our work on teaching parallel pro-
gramming is connected to that done by the Regional Training Center for Parallel Processing
at North Carolina State University. Additional information about this center can be found
at http://renoir.csc.ncsu.edu/RTCPP.

The text is a direct outcome of a National Science Foundation grant awarded to the
authors at the University of North Carolina at Charlotte to introduce parallel programming
in the freshman year.’ It is a great pleasure to acknowledge Dr. M. Mulder, program director
at the National Science Foundation, for supporting our project. Without his support, we
would not be able to pursue the ideas presented in this text. We also wish to thank the
graduate students that worked on this project, J. Alley, M. Antonious, M. Buchanan, and G.

‘National Science Foundation grant “Introducing parallel programming techniques into the freshman cur-
ricula,” ref. no. DUE 9554975.
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Robins, and undergraduate students G. Feygin,  W. Hasty, C. Beauregard, M. Moore, D.
Lowery, K. Patel, Johns Cherian, and especially Uday Kamath. This team helped develop
the material and assignments with us. We should like to record our thanks to James
Robinson, the departmental system administrator who established our local workstation
cluster, without which we would not have been able to conduct the work.

We should also like to thank the many students at UNCC who help us refine the
material over the last few years, especially the ”“teleclasses, in which the materials were
classroom tested in a unique setting. These teleclasses are broadcast to several North
Carolina universities, including UNC-Asheville, UNC-Greensboro, UNC-Wilmington,
and North Carolina State University, in addition to UNCC. We owe a debt of gratitude to
many people, among which Professor Wayne Lang at UNC-Asheville and Professor
Mladen Vouk of NC State University deserve special mention. Professor Lang truly con-
tributed to the course development in the classroom and Professor Vouk, apart from pre-
senting an expert guest lecture for us, set up an impressive Web page that included “real
audio” of our lectures and “automatically turning” slides. (These lectures can be viewed at
http:renoir.csc.ncsu.edu/CSC495A.) Professor John Board of Duke University and
Professor Jan Prins of UNC Chapel Hill also kindly made expert guest presentations to
classes. A parallel programming course based upon the material in this text was also given
at the Universidad National de San Luis in Argentina by kind invitation from Professor
Raul Gallard - all these activities helped us in developing this text.

We would like to express our appreciation to Alan Apt and Laura Steele of Prentice
Hall, who received our proposal for a textbook and supported us throughout its develop-
ment. Reviewers provided us with very helpful advice.

Finally, may we ask that you please send comments and corrections to us at
abw@uncc.edu  (Barry Wilkinson) or cma@uncc.edu (Michael Allen).

Barry Wilkinson
Michael Allen
University of North Carolina
Charlotte
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