SHAPE MEMORY MATERIALS

Edited by

K. OTSUKA

Institute of Materials Science, University qf Tsukuba

and

C. M. WAYMAN Department of Materials Science and Engineering University of Illinois

Contents

	List of contributors Preface			
1	Introduction			
		K. Otsuku and C. M. Wayman		
	1.1	Invitation to shape memory effect and the notion of		
		martensitic transformation	1	
	1.2	Martensitic transformations: crystallography	5	
	1.3	Martensitic transformations: thermodynamic aspects	21	
2	Mech	nanism of shape memory effect and superelasticity	27	
	K. Otsuku and C. M. Wayman			
	2.1	Stress-induced martensitic transformation and superelasticity	27	
	2.2	Shape memory effect	36	
	2.3	Rubber-like behavior	44	
3	Ti-N	i shape memory alloys	49	
		T. Saburi		
	3.1	Structure and transformations	49	
	3.2	Mechanical behavior of Ti-Ni alloys	58	
	3.3	Ternary alloying	73	
	3.4	Self-accommodation in martensites	79	
	3.5	All-round shape memory (Two-way shape memory)	84	
	3.6	Effects of irradiation on the shape memory behavior	87	
	3.7	Sputter-deposited films of Ti-Ni alloys	87	
	3.8	Melt-spun ribbons of Ti-Ni alloys	93	
4	Cu-b	ased shape memory alloys	97	
		T. Tadaki		
	4.1	Phase diagrams of typical Cu-based shape memory alloys	97	
	4.2	Mechanical behavior	100	

- Contents
- 4.3 Aging effects of shape memory alloys
- 4.4 Thermal cycling effects
- 4.5 Improvements of shape memory alloys

5 Ferrous shape memory alloys

T. Maki

- 5.1 Morphology and substructure of ferrous martensite
- 5.2 Ferrous alloys exhibiting shape memory effect
- 5.3 Shape memory effect associated with a' thin plate martensite
- 5.4 Shape memory effect associated with ε martensite in Fe-Mn-Si alloys

6 Fabrication of shape memory alloys *Y. Suzuki*

- 6.1 Fabrication of Ti-Ni based alloys
- 6.2 Fabrication of Cu-Al-Zn based alloys
- 6.3 Powder metallurgy and miscellaneous methods

7 Characteristics of shape memory alloys

J. Van Humbeeck and R. Stalmans

- 7.1 Summary of the functional properties
- 7.2 A generalized thermodynamic description of shape memory behaviour
- 7.3 Two-way memory behaviour
- 7.4 Constrained recovery generation of recovery stresses
- 7.5 The high damping capacity of shape memory alloys
- 7.6 Cycling effects, fatigue and degradation of shape memory alloys
- 7.7 Property values

8 Shape memory ceramics

K. Uchino

- 8.1 Development trends of new principle actuators
- 8.2 Shape memory ceramics
- 8.3 Sample preparation and experiments
- 8.4 Fundamental properties of the electric field-induced phase transition
- 8.5 Comparison with shape memory alloys
- 8.6 Applications of shape memory ceramics
- 8.7 Conclusions

9 Shape memory polymers

M. Irie

9.1 Shape memory effect of polymer materials

		Contents	ix
	9.2	Thermal-responsive shape memory effect	206
	9.3	Photo-responsive shape memory effect	212
	9.4	Chemo-responsive shape memory effect	218
10	Gene	ral applications of SMA's and smart materials	220
		K. N. Melton	
	10.1	Introduction	220
	10.2	History of applications of SMA	221
	10.3	SMA couplings	222
	10.4	Electrical connectors	226
	10.5	Fastener type applications	230
	10.6	History of applications of superelasticity	232
	10.7	Selection criteria for SMA applications	234
	10.8	Smart materials	237
11	The c	lesign of shape memory alloy actuators and their applications	240
		I. Ohkata and Y. Suzuki	
	11.1	Characteristics of shape memory alloy actuators	240
	11.2	The design of shape memory alloy springs	242
	11.3	The design of two-way actuators	247
	11.4	Shape memory alloy actuator applications	254
12	Medi	cal and dental applications of shape memory alloys	267
		S. Miyazaki	
	12.1	Introduction	267
	12.2	Application examples	267
	12.3	Corrosion resistance	276
	12.4	Elution test	278
	12.5	Biocompatibility	279
	Inde	x	282