Proceedings of the Conference

Lattice Effects in High-T_c Superconductors

Santa Fe, New Mexico

January 13 - 15, 1992

Editors

Y. Bar-Yam Boston University

T. Egami University of Pennsylvania

J. Mustre-de Leon and A. R. Bishop Los Alamos National Laboratory

PREFACE

The "Lattice Effects" conference was motivated by the rapidly expanding experimental results and theoretical predictions that lattice anomalies are important in high temperature superconductors.

Most of the effort in the theory of High-T, superconductivity has been driven by suggestions that antiferromagnetism may be responsible for superconductivity. Such theories have as yet not provided definitive predictions which establish their relevance to the Cu-O based class of high-T_c materials. Experimental evidence linking magnetism and superconductivity remains circumstantial.

Experimental evidence for very large coupling of electron and lattice dynamics, has grown from indirect tests to direct measures. A variety of subtle structural transitions have been found to occur in the relevant region of the phase diagram.1 Infrared absorption and Raman scattering^{2,3} show strong coupling between lattice and carrier dynamics. A signal of very large lattice relaxations is found in photo-induced absorption.^{4,5} The most direct experiments have been ion-channeling cross-section changes as a function of T near T_c,^{6,7} neutron radial-distribution-function measurements showing direct evidence for dynamic correlations which change at T_c,⁸ EXAFS showing oxygen atoms tunneling between sites separated by 0.13Å,⁹ and Mössbauer experiments showing anomalous nuclear dynamics.¹⁰

These experiments suggest that in High- T_c materials there are anomalous atomic dynamics which are orders of magnitude larger than in conventional superconductors. Furthermore, the nuclei change their dynamics through T_c as indicated by channeling, neutron scattering, EXAFS and Mössbauer probes.

One early experiment, the absence of an isotope shift,¹¹ suggested that nuclear motions are not important for superconductivity. Theoretical discussions indicate this conclusion may not follow. Moreover, recent experiments have shown the isotope shift changes substantially with doping.'*

Several theories of superconductivity may be consistent with lattice fluctuations and structural correlations: enhanced electron-phonon theory,¹³ large bipolaron theory,¹⁴ electron phase separation theory,¹⁵ nonlinear electron-phonon coupling theory,¹⁶ Jahn-Teller theory,¹⁷ and negative-U based two-component theory.¹⁸

The workshop was designed to provide an opportunity for experimentalists and theorists with a diversity of techniques and approaches to discuss the large variety of structural anomalies and the importance of structural effects in superconductivity. Particular emphasis was placed on the rapid development of direct measures of lattice fluctuations and structural coherence.

The conference was held in Santa-Fe on January 3-5, 1992. In order to reach the conference site the attendees braved a snow storm that closed roads in many parts of New Mexico - but not the roads to Santa-Fe. It was attended by approximately 150 participants and was an **intense** three days of stimulating presentations and discussions. We wish to thank the speakers who introduced the conference: Kay Adams, Director of the Exploratory Research and Development Center at Los Alamos National Laboratory and Don Parkin, Director of the Center for Materials Science at Los Alamos National

Laboratory. We also thank sessions chairs for their efforts: James L. Smith, Heroshi Katayama-Yoshida, Dragoljub Mihailović, Stewart K. Kurtz, James E. Schirber, Masashi Tachiki, Joseph I. Budnick, Heinz-Bernd Schüttler, Yoshiteru Maeno. We wish to express our gratitude to Jean Stark and her staff at the protocol office of Los Alamos for their work prior to and during the conference to ensure the comfort of all the attendees and a smooth program. The conference would not have been possible without the generous sponsorship of the Department of Energy, Office of Basic Sciences, and the Exploratory Research and Development Center at Los Alamos National Laboratory, and the Center for Materials Science at Los Alamos National Laboratory.

We expect that lattice effects will continue to be an important topic leading to a wide variety of experimental and theoretical investigations important both for superconductivity and for our understanding of novel properties of these interesting materials.

Yaneer Bar-Yam

ECS. 44 Cummington St. Boston University Boston, MA 02215 tel. 617-353-2843 fax 617-353-6440 yancer@buenga.bu.edu

José Mustre-de Leon

MS - D429 Los Alamos Natl. Lab. Los Alamos, NM 87545 tel. 505-665-4008 fax 505-6654292

Takeshi Egami

Materials Science Univ. of Pennsylvania Philadelphia, PA 19104 tel. 215-898-5138 fax 215-573-2128 egami@pdfvax.lrsm.upenn.edu

Alan R. Bishop

MS - B262 Los Alamos Natl. Lab. Los Alamos, NM 87545 tel. 5056676491 fax 505-665-3003

- ³S. L. Cooper, M. V. Klein, B. G. Pazol, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 37 (1988)
- ⁴Y. H. Kim, A. J. Heeger, L. Accdo, G. Stucky, and F. Wudl, Phys. Rev. B 36, 7252 (1987)
- ⁵Y. H. Kim, C. M. Foster, A. J. Heeger, S. Cox, and G. Stucky, Phys. Rev. B 38.6478 (1988)
- ⁶ R. P. Sharma, L. E. Rehn, P. M. Baldo and J. Z. Liu, Phys. Rev. Lett. 62.2869 (1989)
- ⁷T. Haga, K. Yamaya, Y. Abe, T. Tajima, and Y. Hidaka, Phys. Rev. B 41,826 (1990)
- ⁸ B. H. Toby, T. Egami, J. D. Jorgensen, and M. A. Subramanian, Phys. Rev. Lett. 64.2414 (1990)
- ⁹ J. Mustre de Leon, S. D. Conradson, I. Batisti'c and A. R. Bishop, Phys. Rev. Lett. 65, 1675 (1990)
- ¹⁰ Y. Yu, S. Pradhan, and P. Boolchand, Phys. Rev. Leu. 67, 3184 (1991)
- ¹¹L. C. Boume, A. Zettl, T. W. Barbee III, and M. L. Cohen, Phys. Rev. B 36, 3990 (1987)
- ¹² J. P. Frank, J. Jung, M. A.-K. Mohamed, S. Gygax, and G. I. Sproule, Phys. Rev. B 44, 5318 (1991)
- 13 J. C. Phillips, Phys. Rev. Lett. 59, 1856 (1987)
- ¹⁴ D. Emin, Phys. Rev. Lett. 62, 1544 (1989)
- ¹⁵ V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64, 475 (1990)
- ¹⁶ A. Bussmann-Holder. A. R. Bishop, I. Batistic, Phys. Rev. B 43, 13728 (1991)
- ¹⁷ K. H. Johnson et al. Mod. Phys. Lett. B 3, 1367 (1989)
- ¹⁸ Y. Bar-Yam, Phys. Rev. B 43,359 (1991); B 43.2601 (1991)

¹J. D. Axe, A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Y. Xu, Phys. Rev. Lett. 62, 2751 (1989)

² D. A. Bonn, J. E. Greedan, C. V. Stager, T. Timusk, M. G. Doss, S. L. Herr, K. Kamaras, and D. B. Tanner, Phys. Rev. Lett. 58.2249 (1987)

CONTENTS

Pre	face	V
Co	ver Art	vii
I.	OVERVIEW — ELECTRON-PHONON INTERACTIONS	
	Electron-Phonon Interactions, Normal-State Electronic Transport, and Defects in Novel Multinary Metals J. C. PHILLIPS	3
	Superconductivity and Lattice Effects P. B. ALLEN	17
II.	EXPERIMENT STRUCTURAL ANOMALY	
A.	Ion Channeling	
	Ion Channeling Observation of Correlated Atomic Displacements Below T _c in YBa ₂ Cu ₃ O _{7-x} and Pb-Doped Bi ₂ Sr ₂ CaCu ₂ O _x L. E. REHN, R. P. SHARMA AND P. M. BALDO	27
	Temperature Dependence of Ion Channeling in Superconducting Single Crystals of $YBa_2Cu_3O_{7-y}$ and $Bi_2Sr_2CaCu_2O_x$ K. YAMAYA. T. HAGA AND Y. ABE	33
B.	XAFS	
	The Axial Oxygen and Structural Anomalies in High-Tc Materials J. MUSTRE DE LEON, S. D. CONRADSON, A. R. BISHOP, I. BATISTIC RAISTRICK AND P. G. ALLEN	39
	Unusual Copper Environment in YBa ₂ Cu ₃ O _{7-δ} Superconductors as Found by XAFS E. A. STERN, M. QIAN, Y. YACOBY, S. M. HEALD AND H. MAEDA	51
	Non Homogeneous Cu Site Structure Configurations and Cu Apical Oxygen Vibrations at the Normal to Superconducting Transition A. BIANCONI, S. DELLA LONGA, M. MISSORI, I. PETTITI AND M. POMPA	65
	Lattice Distortions Around T_c in $YBa_2Cu_3O_{7-\delta}$ Studied by Cu K Absorption J. Röhler	77

C. Neutrons

 Structural Coherence of the CuO₂ Planes of Oxide Superconductors: Is It a Requirement for Superconductivity? J. D. JORGENSEN, D. G. HINKS, B. A. HUNTER, R. L. HITTERMAN, A. W. MITCHELL, P. G. RADAELLI, B. DABROWSKI, J. L. WAGNER, H.TAKAHASHI AND E. C. LARSON 	84
Local Structural Changes in High-T, Oxides Associated with Superconductivity S. J. L. BILLINGE AND T. EGAMI	93
The Local Atomic Structure of Superconducting Ba _{0.6} K _{0.4} BiO ₃ : Temperature Dependence Near T _c H. D. ROSENFELD AND T. EGAMI	105
Local Orthorhombic Structure Observed in La _{2-x} Sr _x Cu ₄ for x=0.075 to 0.25 T. R. Sendyka, T. Egami, B. A. Hunter, J. D. Jorgensen, D. G. Hinks, A. W. Mitchell, B. Dabrowski, R. L. Hitterman, P. G. Radaelli and J. L. Wagner	111
The Local Structure of the YBa ₂ (Cu _{1-y} Co _y) ₃ O _{6+x} Compounds by Diffraction and Absorption Techniques H. RENEVIER, J. L. HODEAU AND M. MAREZIO	118
D. Mössbauer	
Structural Coherence and Motional Broadening of ⁵⁷ Fe Mössbauer Resonance in Cuprate Superconductors Y. WU AND P. BOOLCHAND	131
Co Site Occupancy, Superconductivity, and Local Microstructure in Y _{1-z} Ca _z Ba ₂ (Cu _{1-x} Co _x) ₃ O _{6+y} M. G. SMITH, J. B. GOODENOUGH, R. D. TAYLOR AND H. OESTERREICHER	137
E. Nuclear Quadrupole Resonance	
Pressure Effects on NQR Parameters in Oxygen-deficient YBa ₂ Cu ₃ O _{6.62} A. P. REYES, E. T. AHRENS, P. C. HAMMEL, R. H. HEFFNER AND M. TAKIGAWA	143
F. Isotope Shift	
The Oxygen Isotope Effect in Zn Substituted YBCO	148

E. ALTENDORF AND J. C. IRWIN

х

III. THEORY --- LATTICE EFFECTS

A. Structural Anomaly	
Influence of Nesting on the Superconductivity-Induced Phonon Self-Energy F. MARSIGLIO	157
Polaron Tunneling as a Mechanism for the Double-Well Anharmonicity of the Axial Oxygen in YBa ₂ Cu ₃ O ₇ J. MUSTRE DE LEON, I. BATISTIĆ, S. A. TRUGMAN, A. R. BISHOP AND S. D. CONRADSON	163
Structural Anomalies of High Temperature Superconductors as a Consequence of Charge Redistribution Below T _c D. I. KHOMSKII AND F. V. KUSMARTSEV	171
Lattice Effects and the Mechanism of High-Temperature Superconductivity Y. BAR-YAM	177
B. Isotope Shift	
The Influence of Anharmonic Phonons on the Isotope Effect in High-T, Oxides V. H. CRESPI AND M. L. COHEN	184
Isotope Effect and Electronic Mechanisms J. P. CARBOTTE AND E. J. NICOL	189
C. Specific Heat	
Quantum Tunneling of the Apex Oxygen Atom and Low Temperature Specific Heat in YBCO Superconductors M. ZOLI	195
Calculations of Low-Temperature Phonon Specific Heat of High-Tc Superconductors F. W. DE WETTE, A. D. KULKARNI, W. KRESS, U. SCHRÖDER AND E. RAMPF	209
IV. THEORY — AB-INITIO	
Zone Corner Tilts and the LTT Phase in La _{2-x} M _x CuO ₄ W. E. PICKETT, R. E. COHEN AND H. KRAKAUER	217
Coupling of Octahedral Tilts to the Electronic Structure in La _{2-x} (Sr,Ba) _x CuO ₄ R. E. COHEN, W. E. PICKETT, D. PAPACONSTANTOPOULOS AND	223

H. KRAKAUER

Large Calculated Electron-Phonon Interactions and Linewidths of Phonons in $La_{2-x}M_xCuO_4$

H. KRAKAUER, W. E. PICKETT AND R. E. COHEN

229

Density Functional Theory for Phonons, Electrons, and their Interaction in $YBa_2Cu_3O_7$

Electron Interaction Effects in the Infrared Spectra of High T_c Superconductors

235

255

I. I. MAZIN, O. K. ANDERSEN, A. I. LIECHTENSTEIN, O. JEPSEN,

V. P. ANTROPOV, S. N. RASHKEEV, V. I. ANISIMOV, J. ZAANEN,

C. O. RODRIGUEZ AND M. METHFESSEL

V. EXPERIMENT - GENERAL PROBES

A. Photons

	D. B. TANNER, D. B. ROMERO, K. KAMARÁS AND T. TIMUSK	
	Infrared Phonon Structure in Epitaxial Films of Tl ₂ Ca ₂ Ba ₂ Cu ₃ O ₁₀ at Low Temperatures D. MILLER, P. L. RICHARDS, W. Y. LEE, N. NEWMAN, S. M. GARRISON AND J. S. MARTENS	269
	Raman Studies of High T _c Superconductors from the Viewpoint of Polarons S. SUGAI	275
	 Higher-Order Anharmonic Effects in the Apex O Phonon Self-Energy Investigated by Raman Scattering Experiments on 1-2-3, 1-2-1-2 and 2-2-1-2 Structure Materials D. MIHAILOVIĆ, K. F. MCCARTY AND D. S. GINLEY 	281
	The Origin of Different T _c s in Oxide Superconductors: A Comparison of (T1,Cd) ₂ (Ba,La) ₂ CuO ₆ with (La,Ba) ₂ CuO ₄ by Raman and Infrared Absorption Spectroscopy D. MIHAILOVIĆ, T. MERTELJ, K. F. VOSS, A. J. HEEGER AND N. HERRON	287
	Depth-Dependence of the Raman Spectra from the TI-2212 Thin Superconducting Films Subjected to Sequential Chemical Etch J. CHRZANOWSKI, J. C. IRWIN, B. HEINRICH, N. FORTIER AND A. CRAGG	293
B.	Tunneling	
	Superconducting Tunneling and Strong Coupling Effects R. C. Dynes, F. Sharifi and J. M. Valles, Jr.	299
C.	Ultrasound	
	Dopant-Induced Symmetry-Breaking in the Resonant Ultrasound Spectrum of L _{1.86} Sr _{.14} CuO ₄ A. MIGLIORI, J. L. SARRAO, M. LEI, T. M. BELL, W. M. VISSCHER, I. TANAKA AND H. KOJIMA	309

D. Specific Heat

The Debye Temperature of $YBa_2Cu_3O_{7-\delta}$ and its Dependence on the Volume	
Fraction of Superconductivity	317
R.A. FISHER, J.E. GORDON AND N.E. PHILLIPS	

VI. THEORY -MECHANISMS

A.	Anharmonicity	
	Role of Strong Lattice Anharmonicity in High T _c Behavior J. R. HARDY, J. W. FLOCKEN AND R. A. GUENTHER	327
	Anharmonic Lattice Dynamics, Structural Transitions and Superconductivity in La _{2-x} M _x CuO ₄ N. M. PLAKIDA, T. GALBAATAR, S. L. DRECHSLER, S. E. KRASAVIN	340
	Nonlinear Electron-Phonon Interactions in High Temperature Superconductors A. BUSSMANN-HOLDER AND A. R. BISHOP	363
	Electron Phonon Coupling in the Cuprates H. MORAWITZ, V. Z. KRESIN AND S. L. WOLF	372
B.	Bipolarons and Local pairing	
	Large Bipolarons and Superconductivity D. Емім	377
	Polaronic Effects in High T _c Materials J. R ANNINGER	389
	Comments on the Formation, Motion and Superconductivity of <u>Small</u> Bipolarons D. Емім	402
	Reply to EMIN's "Comment on the Formation, Motion and Superconductivity of Small Bipolarons" J. RANNINGER	407
	Comments on EMIN's paper, "Large Bipolarons and Superconductivity" A. S. ALEXANDROV AND J. RANNINGER	410
	Reply to Comments of Alexandrov and Ranninger D. EMIN	416
C	. Two-Component	
	Superconductivity due to the Hybridization of Conduction Electrons with Local Pairs C. S. TING	422

Lattice Effects in Two-Component Superconductors Y. BAR-YAM	432
D. Electron-Phonon and Electron-Electron Interactions	
Spin-Peierls Ground States, Frustration, and Device Applications in a Multi-Band Peierls-Hubbard Model H. RÖDER, A.R. BISHOP, A. SAXENA AND J. T. GAMMEL	447
Infrared Absorption Spectra of Various Doping States in Cuprate Superconductors K. Yonemitsu, A.R. Bishop and J. Lorenzana	453
Is the Phonon Mechanism for Superconductivity Possible in Strongly Correlated Systems? J. H. KIM AND Z. TESANOVIC	460
Strong Coulomb Correlation Effects on the Electron-Phonon Contributions to Transport and Superconductivity J. H. KIM AND K. LEVIN	472
E. Others	
Bondlength Modulation of the Covalent Character of the Cu-0 Bond in High-T _c Copper Oxides J. B. GOODENOUGH, JS. ZHOU AND J. CHAN	486
Spectator Fermion Model For HTS And HF A. KALLIO. V. APAJA AND X. XIONG	494

VII. STRUCTURAL PHASE TRANSITIONS

Fine Scale Mesostructures in Superconducting and Other Materials J. A. KRUMHANSL	503
Lattice Instabilities and Structural Phase Transformations in La ₂ CuO ₄ Superconductors and Insulators J. D. Axe	517
Structural Phase Transitions in Insulating and Metallic La ₂ CuO ₄ M. K. CRAWFORD, W. E. FARNETH, R. L. HARLOW, E. M. MCCARRON, R. MIAO, H. CHOU AND Q. HUANG	531
Low-Temperature Instabilities at 1/8 Doping in La _{2-x} Ba _x CuO ₄ and Related Compounds Y. MAENO, N. KAKEHI, Y. TANAKA, T. TOMITA, F. NAKAMURA AND T. FUJITA	542

VIII. THEORY GENERAL		
Energy Spectrum and Problem of the Mott Transition in the 2-1-4-Compounds L. P. Gor'коv	561	
Coulomb Blockade and Correlated Tunneling of Solitons In Charge-Density Waves J. H. MILLER, JR	567	
Lattice Dielectric Function of Nd ₂ CuO ₄ Based on the Shell Model H. CHEN AND J. CALLAWAY	573	
IX. EXPERIMENT — GROWTH AND CHARACTERIZATION		
Extreme Sensitivity of T _c To Cool-Down Rate and Substrate Temperature for Epitaxial Fe-Doped YBCO Films F. BRIDGES, J. B. BOYCE AND R. I. JOHNSON	583	
Transport and Magnetization Critical Currents in c-Axis Oriented YBa ₂ Cu ₃ O _{7-δ} Thin Films Compared C. T. BLUE AND P. BOOLCHAND	589	

Re-Examination of the Phase Diagram in Heavily-Doped La_{2-x}Sr_xCuO₄

H. TAKAGI, R. J. CAVA, M. MAREZIO, B. BATLOGG, J. J. KRAJEWSKI,

W. F. PECK, JR., P. BORDET AND D. E. COX

Pulsed Laser Deposition of Superconducting Ba_{1-x}K_xBiO₃ Thin Films595C. E. PLATT, R. A. SCHWEINFURTH, M. R. TEEPE AND D. J. VAN HARLINGEN

Author Index

XV

548

601