REAL SOLIDS

A. E. Hughes and D. Pooley Atomic Energy Research Establishment Harwell

WYKEHAM PUBLICATIONS (LONDON) LTD LONDON and WINCHESTER SPRINGER-VERLAG NEW YORK INC. 1975

NEARLY everything we do in our lives depends in one way or another on the properties of solids, so it is not surprising that a large part of the research and development activity in modern science is devoted to the study of the solid state. The physics of solids has one of its most obvious practical products in electronic devices, the chemistry of solids in plastics, dyestuffs and fibres, and the science of metallurgy is apparent through the wide range of structural materials which are now available to the engineer. The motivation for this book arose originally through our own involvement in radiation effects in solids, which is a topic invoking a wide range of modern scientific concepts without being an accepted mainstream subject which features much in formal science courses at school or university. We therefore aimed to write an account of this field which would be intelligible to the non-specialist. However, after starting a text based on this idea, and discussing it with Brian Woolnough, it seemed to us all that some benefit would derive by broadening the subject matter. Radiation effects in a solid revolve almost exclusively around the production of defects in its atomic structure, which manifest themselves through changes in various physical properties of the material. But there are many other features in the behaviour of solids which are controlled by structural defects which are present for reasons which have nothing to do with radiation at all. In many cases the presence of defects explains why the properties of many solids with which we are very familiar, such as pottery and steels, differ from the ideal solids which are discussed in most text-books. We therefore have tried to write a book for the Wykeham series which describes how the properties of 'real' solids may be understood in terms of the atomic and electronic structure of ideal solids modified by the presence of a wide range of types of structural defect. We have kept the interaction of solids with radiation as a recurring theme, partly because this is one of the more important ways in which defects are formed and has stimulated a great deal of study of defect properties, and partly because the interaction of solids with one simple form of radiation, light, is the means by which we gain much of our practical experience of the nature of real solids. The sort of general questions we aim to answer in this book are exemplified by such as "Why are some solids

electrical conductors and some insulators?", "Why are some solids transparent and others opaque?", and "Why are some solids brittle and others ductile?"

The first two chapters of the book form an introduction to the structure and properties of perfect solids, developing the ideas about electrons and atoms which are required to understand the nature of the solid state. Chapters 3 and 4 introduce the types of defect which may be present in a real solid and their influence on some of the physical properties of materials. Chapters 5 and 6 describe the interaction of solids with radiation, leading to a discussion of the production of defects by irradiation in Chapter 7. Finally Chapters 8 and 9 are devoted to some of the practical consequences of radiation effects, both where they have unwanted effects and where they are used to perform some potentially useful tasks.

Some of the material covered in this book overlaps the content of other books in the Wykeham series, and in some cases we have deliberately referred to other books rather than spell out an argument in detail. The reader should find the following texts to be especially useful companions to our volume: *Elementary Quantum Mechanics* by N. F. Mott, *Elementary Science of Metals* by J. W. Martin, *Crystals and X-rays* by H. S. Lipson, *Biological Effects* of *Radiation* by J. E. Coggle, *Solid State Electronic Devices* by D. V. Morgan and M. J. Hawes and *Strong Materials* by J. W. Martin.

It is a pleasure to acknowledge the help we have received from our schoolmaster-collaborator, Brian Woolnough, and from the series editor Mr. G. R. Noakes. Both have contributed in many ways towards making the text more readable. Finally we should like to thank many of our colleagues at Harwell who have contributed to our understanding of the subject matter of this book, and our families who have put up with many hours of silence and detached contemplation during its writing.

Harwell

May 1974

A. E. Hughes D. Pooley

Preface	V
Relevant fundamental constants	xi
Table of symbols	xii
Chapter 1 ATOMS AND ORBITALS	
1.1. Introduction	1
1.2. Atomic structure	I
1.3. Electron shells	4
1.4. Orbitals	0
1.5. Interactions between atoms	/
Chapter 2 THE STRUCTURE AND PROPERTIES OF PERFECT SOLIDS	
2.1. The structure of solids	10
2.2. Crystal bonding	12
Ionic bonding	13
Covalent bonding	15
Metallic bonding	17
Van der Waals bonding	17
Hydrogen bonds	18
2.3 The electronic structure of solids	19
Electrons in solids	19
Energy bands	20
2.4. Vibrations in solids	23
Chapter 3 DEFECTS TN CRYSTALS	
3.1. Types of defects in crystals	27
Point defects	27
Line defects	28
Grain boundaries	30
Stacking faults	31
Bulk defects	32
3.2. Origins of defects in crystals	32
Chemical	32
Thermal	35
Radiation	41

Chapter 4 DEFECTS AND THE PHYSICAL PROPERTIES OF SOLIDS	
4.1. Dimensional properties	42
4.2. Electrical properties	45
Metals	43
Semiconductors	47
Insulators	54
Dielectric loss	55
4.3. Inermal properties	55
Thermal conductivity	55
1.4 Diffusion	62
4.4. Diffusion 4.5. Mechanical properties	66
4.5. Mechanical properties Brittle fracture	67
Ductility and slip	69
Chanter 5 INTERACTION OF SOLIDS WITH LOW	
ENERGY RADIATION	
5.1. Interaction with optical and infra-red photons	74
Clear dielectric solids	74
Optical absorption in pure insulating solids	76
Absorption by defects	79
Dielectric scattering	81
Metals	83
Luminescence	86
5.2. Magnetic resonance	86
5.3. Diffraction	89
X-ray diffraction	91
Neutron diffraction	92
Low energy electron diffraction	94
Electron microscopy	94
Chapter 6 INTERACTION OF SOLIDS WITH HIGH ENERGY RADIATION	
6.1 High energy photons	98
Photo-electric absorption	99
Thomson and Compton scattering	101
Pair-production	104
Cross-sections	105
The generation of high energy photons	107
6.2. Light charged particles	110
Energy loss to electrons and nuclei	110
Energy loss by electrons and heavier particles	111 •
Scattering and straggling	112
6.3. Heavy ions	115

Energy limits for stripping and ionization Atom-atom collisions The generation of high energy particles 6.4. Neutrons Neutron sources 6.5. Summary	115 117 119 120 121 121
Chapter 7 THE CREATION OF DEFECTS BY RADIATION	
 7.1. Atomic displacements by direct momentum transfer Maximum energy transfer from projectile to target Measurement of displacement energy thresholds Energy transfer in glancing collisions Numbers of primary displacements Displacement cascades Practical relevance 7.2. Electronic rearrangements Fast electronic relaxation processes Electron and hole trapping 7.3. Photochemical processes Reasons for the rarity of photochemical damage 7.4. Radiation damage by nuclear reactions 7.5. Secondary processes Athermal annealing Thermal annealing Thermal annealing The formation of clusters 	124 125 127 128 132 133 136 137 137 139 141 143 144 144 145 146
Chapter 8 TECHNOLOGICAL PROBLEMS IN RADIATION DAMAGE	
 8.1. Radiation in nuclear reactors Fission reactors Fusion reactors 8.2. Radiation damage in reactors Stored energy Swelling Embrittlement and creep Damage in fusion reactors 8.3. Radiation effects in space Solar cells Charge trapping effects in devices 8.4. Miscellaneous problems Phosphor degradation 	149 149 154 154 155 160 161 163 164 165 166
Lasers	167
Chapter 9 APPLICATIONS OF RADIATION EFFECTS	
9.1. Solid-state radiation dosimetry Radiophotoluminescence	168 170

Radiothermoluminescence	172
9.2. Information storage devices	173
Photochromic calcium fluoride	175
Inhibitable cathodoluminescent phosphors	178
Dark trace displays	182
9.3. Other useful radiation damage effects	184
Polymer impregnation of wood	184
Ion implantation	186
Selected bibliography	191
Index	193