Indice

1.	Introducción 1.1 Teoría de Campos y Materia condensada	
	Simetria conforme? 2.1 Invariancia de escala e invariancia conforme 2.2 Transformaciones conformes 2.3 El efecto de las perturbaciones 2.4 La carga central	7 7 8 9 10
	Electrones interactuantes en una dimensión 3.1 Campos continuos y densidades 3.2 Separación en modos izquierdos-derechos 3.3 Analogia con la ecuaciónón de Dirac 3.4 Interacciones	11 11 12 13 14
4.	Bosonización 4.1 Por qué es una dimensión tan especial? 4.2 El bosón 4.2.1 El campo dual 4.3 Representaciónn bosónica del campo fermiónico 4.4 Detalles del procedimiento de bosonización 4.4.1 Modos bosónicos derechos e izquierdos 4.4.2 Prueba de las formulas de bosonización: Operadores de vértice	17 18 19 20 21 21 22
5.	El modelo de Heisenberg 5.1 El hamiltoniano efectivo 5.2 Descripción mediante el álgebra $W_{1+\infty}$ 5.2.1 El álgebra $W_{1+\infty}$ 5.2.2 Realización del álgebra $W_{1+\infty}$ en términos del fermión de Weyl 5.2.3 La realización bosónica del algebra $W_{1+\infty}$ 5.3 La estructura $W_{1+\infty}$ del modelo de Heisenberg 5.4 Aproximación conforme (orden l/N) 5.4.1 El modelo XY (teoría libre) 5.4.2 El modelo XXZ (interactuante) 5.5 Resumen de algunas relaciones importantes	277 366 377 399 411 436 466 488 522
6.	Más allá de la aproximación conforme 6.1 La parte compleja de la susceptibilidad a T=O	53 53 53 55 56
7.	Absorción óptica 7.0.1 Modelo teórico para describir la absorción óptica 7.0.2 Mediciones experimentales 7.1Aproximación conforme	61 62 65
8.	Conclusiones	67

RESUMEN.:

En el presente trabajo se propone un método para hacer cálculos dentro del regimen conforme y luego extender los resultados fuera de dicha aproximación. La propuesta se aplica al modelo de Heisenberg, en particular se calcula la parte compleja de la susceptibilidad para el modelo XXX y el modelo XY. Se estudia además el espectro de absorción óptica del $S_{r_2}C_uO_3$, sin salir del régimen conforme y se deja planteado el problema para salir de dicha aproximacion.